
Algorithm Theory – WS 2024/25

Chapter 3 : Dynamic Programming

Fabian Kuhn
Dept. of Computer Science
Algorithms and Complexity

Weighted Interval Scheduling

• Given: Set of intervals, e.g. [0,10],[1,3],[1,4],[3,5],[4,7],[5,8],[5,12],[7,9],[9,12],[8,10],[11,14],[12,14]

• Each interval has a weight 𝒘

• Goal: Non-overlapping set of intervals of largest possible weight

• Overlap at boundary ok, i.e., [4,7] and [7,9] are non-overlapping

• Example: Intervals are room requests of different importance

0 1 2 3 4 5 76 8 9 10 11 12 13 14

[0,10], 1

[1,3], 1

[1,4], 10

[3,5], 2

[4,7], 5

[5,8], 1

[11,14], 5

[5,12], 25

[8,10], 1 [12,14], 1

[7,9], 4 [9,12], 8

Fabian Kuhn – Algorithm Theory 2

Greedy Algorithms

Choose available request with earliest finishing time:

• Algorithm is not optimal any more

• It can even be arbitrarily bad…

• No greedy algorithm known that works

0 1 2 3 4 5 76 8 9 10 11 12 13 14

[0,10], 1

[1,3], 1

[1,4], 10

[3,5], 2

[4,7], 5

[5,8], 1

[11,14], 5

[5,12], 25

[8,10], 1 [12,14], 1

[7,9], 4 [9,12], 2

Fabian Kuhn – Algorithm Theory 3

Solving Weighted Interval Scheduling

• Interval 𝒊 for 𝒊 = 𝟏,… , 𝒏:
• start time 𝑠 𝑖 ≥ 0, finishing time 𝑓 𝑖 > 𝑠(𝑖), weight 𝑤 𝑖 ≥ 0

• Assume intervals 1,… , 𝑛 are sorted by increasing 𝒇(𝒊)
• 0 < 𝑓 1 ≤ 𝑓 2 ≤ ⋯ ≤ 𝑓(𝑛), for convenience: 𝑓 0 = 0

Simple observation: Opt. solution does or does not contain interval 𝑛

Case 1: opt. solution does not contain interval 𝑛
⟹ opt. sol. for intervals 1,… , 𝑛 = opt. sol. for intervals 1,… , 𝑛 − 1

Case 2: opt. solution contains interval 𝑛

In example:

Opt. sol. consists of interval 𝑛

opt. sol. for intervals 1,… , 𝑛 − 5

𝑝 𝑛 : first non-conflicting interval
here, 𝑝 𝑛 = 𝑛 − 5

𝑛

𝑠(𝑛) 𝑓(𝑛)

𝑛 − 1

𝑛 − 2

𝑛 − 3

𝑛 − 4

𝑛 − 5

+

𝑝(𝑛)

Fabian Kuhn – Algorithm Theory 4

Solving Weighted Interval Scheduling

• Interval 𝒊 for 𝒊 = 𝟏,… , 𝒏:
• start time 𝑠 𝑖 ≥ 0, finishing time 𝑓 𝑖 > 𝑠(𝑖), weight 𝑤 𝑖 ≥ 0

• Assume intervals 1,… , 𝑛 are sorted by increasing 𝒇(𝒊)
• 0 < 𝑓 1 ≤ 𝑓 2 ≤ ⋯ ≤ 𝑓(𝑛), for convenience: 𝑓 0 = 0

Simple observation: Opt. solution does or does not contain interval 𝑛

• Define 𝑝 𝑘 ≔ max 𝑖 ∈ 0,… , 𝑘 − 1 ∶ 𝑓 𝑖 ≤ 𝑠 𝑘

• Weight of optimal solution OPT𝑘 for only intervals 1,… , 𝑘: 𝑊 𝑘

• Solution OPT𝑘 does not contain interval 𝑘: 𝑾 𝒌 = 𝑾 𝒌− 𝟏
• Weight of optimal solution with only first 𝑘 − 1 intervals

• Solution OPT𝑘 contains interval 𝑘: 𝑾 𝒌 = 𝒘 𝒌 +𝑾(𝒑 𝒌)
• Weight of interval 𝑘 plus weight of optimal solution of

non-conflicting earlier intervals

Fabian Kuhn – Algorithm Theory 5

Example

[0,5], w=2

[1,7], 4

[5,9], 4

[10,13], 1

[2,11], 5

[9,12], 2

𝟏

Interval:

𝟐

𝟑

𝟒

𝟓

𝟔 𝒑 𝟔 = 𝟑

𝒑 𝟏 = 𝟎

𝒑 𝟐 = 𝟎

𝒑 𝟑 = 𝟏

𝒑 𝟒 = 𝟎

𝒑 𝟓 = 𝟑

Time to compute values 𝒑 𝒌 :

• Assume that intervals are already sorted by finishing time.

• For each 𝑘, do a binary search ⟹ time 𝑂 log 𝑘
• Overall time: 𝑂 𝑛 log𝑛

Fabian Kuhn – Algorithm Theory 6

Recursive Definition of Optimal Solution

• Recall:
• 𝑊(𝑘): weight of optimal solution with intervals 1,… , 𝑘
• 𝑝 𝑘 : last interval that finishes before interval 𝑘 starts

• 𝑝 𝑘 = 0 if there is no interval that finishes before interval 𝑘 starts

• Recursive definition of optimal weight:

∀𝑘 > 1: 𝑊 𝑘 = max 𝑊 𝑘 − 1 ,𝑤 𝑘 +𝑊 𝑝 𝑘

𝑊 0 = 0

Immediately gives a simple, recursive algorithm

Compute p(k) values for all k
W(k):

if k == 0:
x = 0

else:
x = max{W(k-1), w(k) + W(p(k))}

return x

Fabian Kuhn – Algorithm Theory 7

Running Time of Recursive Algorithm

𝟏

𝟐

𝟑

𝟒

𝟓

𝟔 𝒑 𝟔 = 𝟑

𝒑 𝟏 = 𝟎

𝒑 𝟐 = 𝟎

𝒑 𝟑 = 𝟏

𝒑 𝟒 = 𝟎

𝒑 𝟓 = 𝟑

𝑊(6)

𝑊(5) 𝑊(3)

𝑊(4) 𝑊(3) 𝑊(2) 𝑊(1)

𝑊(3)

𝑊(2)

𝑊(1)

𝑊(1)

𝑊(2) 𝑊(1) 𝑊(1)

𝑊(1)

Fabian Kuhn – Algorithm Theory 8

Memoizing the Recursion

• Running time of recursive algorithm: exponential!

• But, alg. only solves 𝑛 different sub-problems: 𝑊 1 ,… ,𝑊(𝑛)

• There is no need to compute them multiple times

Memoization: Store already computed values for future rec. calls

Compute p(k) for all k

memo = {};

W(k):
if k in memo: return memo[k]
if k == 0:

x = 0
else:

x = max{W(k-1), w(k) + W(p(k))}
memo[k] = x
return x

Fabian Kuhn – Algorithm Theory 9

Dynamic Programming (DP)

Recursion: Express problem recursively in terms of
(a ‘small’ number of) subproblems (of the same kind)

Memoize: Store solutions for subproblems
reuse the stored solutions if the same subproblems
has to be solved again

Weighted interval scheduling: subproblems 𝑊 1 ,𝑊 2 ,𝑊 3 ,…

runtime = #subproblems ⋅ time per subproblem

DP ≈ Recursion + Memoization

Fabian Kuhn – Algorithm Theory 10

Bottom-Up & Computing the Solution

Computing the schedule: store where you come from!

𝒘 = 𝟐

𝒘 = 𝟒

𝒘 = 𝟒

𝒘 = 𝟏

𝒘 = 𝟓

𝒘 = 𝟐

𝟏

𝟐

𝟑

𝟒

𝟓

𝟔 𝒑 𝟔 = 𝟑

𝒑 𝟏 = 𝟎

𝒑 𝟐 = 𝟎

𝒑 𝟑 = 𝟏

𝒑 𝟒 = 𝟎

𝒑 𝟓 = 𝟑

𝒘 = 𝟑𝟕 𝒑 𝟕 = 𝟓

𝒘 = 𝟔𝟖 𝒑 𝟖 = 𝟒

𝟎𝑾: 𝟐 𝟒 𝟔 𝟔 𝟖 𝟖 𝟏𝟏 𝟏𝟐

𝑊[0]𝑊[1]𝑊[2]𝑊[3]𝑊[4]𝑊[5]𝑊[6]𝑊[7]𝑊[8]

Fabian Kuhn – Algorithm Theory 11

DP: Some History …

• Where das does the name come from?

• DP was developed by Richard E. Bellman in 1940s/1950s.

• In his autobiography, it says:

"I spent the Fall quarter (of 1950) at RAND. My first task was to find a name for multistage decision
processes. … The 1950s were not good years for mathematical research. We had a very interesting
gentleman in Washington named Wilson. He was Secretary of Defense, and he actually had a pathological
fear and hatred of the word research. … His face would suffuse, he would turn red, and he would get violent
if people used the term research in his presence. You can imagine how he felt, then, about the term
mathematical. … Hence, I felt I had to do something to shield Wilson and the Air Force from the fact that I
was really doing mathematics inside the RAND Corporation. What title, what name, could I choose? In the
first place I was interested in planning, in decision making, in thinking. But planning, is not a good word for
various reasons. I decided therefore to use the word “programming”. I wanted to get across the idea that
this was dynamic, this was multistage, this was time-varying. … It also has a very interesting property as an
adjective, and that it's impossible to use the word dynamic in a pejorative sense. … Thus, I thought dynamic
programming was a good name. It was something not even a Congressman could object to. …“

Fabian Kuhn – Algorithm Theory 12

Dynamic Programming

„Memoization“ for increasing the efficiency of a recursive solution:

• Only the first time a sub-problem is encountered, its solution is computed and then stored in a table. Each
subsequent time that the subproblem is encountered, the value stored in the table is simply looked up and
returned (without repeated computation!).

Dynamic programming / memoization can be applied if

• Optimal solution contains optimal solutions to sub-problems
(recursive structure)

• Number of sub-problems that need to be considered is small

Time is at least linear in the number of subproblems.

Computing the solution:

• For each sub-problem, store how the value is obtained (according to which recursive rule).

Fabian Kuhn – Algorithm Theory 13

Matrix-chain multiplication

Given: sequence (chain) 𝐴1, 𝐴2, … , 𝐴𝑛 of matrices

Goal: compute the product 𝐴1  𝐴2 …  𝐴𝑛

Problem: Parenthesize the product in a way that minimizes
the number of scalar multiplications.

Definition: A product of matrices is fully parenthesized if it is

• a single matrix

• or the product of two fully parenthesized matrix products, surrounded by parentheses.

Fabian Kuhn – Algorithm Theory 14

Example

All possible fully parenthesized matrix products of the chain 𝐴1, 𝐴2, 𝐴3, 𝐴4:

(𝐴1 (𝐴2 (𝐴3𝐴4)))

(𝐴1 ((𝐴2𝐴3) 𝐴4))

((𝐴1𝐴2)(𝐴3𝐴4))

((𝐴1 (𝐴2𝐴3)) 𝐴4)

(((𝐴1𝐴2)𝐴3) 𝐴4)

Fabian Kuhn – Algorithm Theory 15

Different parenthesizations correspond to different trees

𝐴1 𝐴2 𝐴3𝐴4

𝐴1 𝐴2𝐴3 𝐴4

𝐴1𝐴2 𝐴3𝐴4

𝐴1𝐴2 𝐴3 𝐴4

Fabian Kuhn – Algorithm Theory 16

Number of different parenthesizations

• Let 𝑃(𝑛) be the number of alternative parenthesizations of the product 𝐴1 ⋅ … ⋅ 𝐴𝑛:
•

𝑃 1 = 1

𝑃 𝑛 = ෍

𝑘=1

𝑛−1

𝑃 𝑘 ⋅ 𝑃(𝑛 − 𝑘) , for 𝑛 ≥ 2

𝑃 𝑛 + 1 =
1

𝑛 + 1
2𝑛
𝑛

≈
4𝑛

𝑛 𝜋𝑛
+ 𝑂

4𝑛

𝑛5

𝑃 𝑛 + 1 = 𝐶𝑛 (𝑛𝑡ℎ Catalan number)

• Thus: Exhaustive search needs exponential time!

exponential in 𝑛

Fabian Kuhn – Algorithm Theory 17

Multiplying Two Matrices

𝐴 = 𝑎𝑖𝑗 𝑝×𝑞
, 𝐵 = 𝑏𝑖𝑗 𝑞×𝑟

, 𝐴 ⋅ 𝐵 = 𝐶 = 𝑐𝑖𝑗 𝑝×𝑟

𝑐𝑖𝑗 = ෍

𝑘=1

𝑞

𝑎𝑖𝑘𝑏𝑘𝑗

Algorithm Matrix-Mult

Input: (𝑝 × 𝑞) matrix 𝐴, 𝑞 × 𝑟 matrix 𝐵
Output: (𝑝 × 𝑟) matrix 𝐶 = 𝐴 ⋅ 𝐵
1 for 𝑖 ≔ 1 to 𝑝 do

2 for 𝑗 ≔ 1 to 𝑟 do

3 𝐶 𝑖, 𝑗 ≔ 0;

4 for 𝑘 ≔ 1 to 𝑞 do

5 𝐶 𝑖, 𝑗 ≔ 𝐶 𝑖, 𝑗 + 𝐴 𝑖, 𝑘 ⋅ 𝐵[𝑘, 𝑗]

Number of multiplications and additions: 𝒑  𝒒  𝒓

Remark:

Using this algorithm, multiplying
two (𝑛  𝑛) matrices requires 𝑛3

multiplications. This can also be
done faster, using only
𝑂(𝑛2.373) multiplications.

using divide-and-conquer

Fabian Kuhn – Algorithm Theory 18

Matrix-chain multiplication: Example

Computation of the product 𝐴1𝐴2𝐴3 , where

𝐴1 : (50  5) matrix

𝐴2 : (5  100) matrix

𝐴3 : (100  10) matrix

a) Parenthesization ((𝐴1𝐴2)𝐴3)and 𝐴1 𝐴2𝐴3 require:

𝐴′ = (𝐴1𝐴2): 𝐴
′′ = (𝐴2𝐴3):

𝐴′𝐴3: 𝐴1𝐴′′:

Sum:

50 ⋅ 5 ⋅ 100 = 25′000 5 ⋅ 100 ⋅ 10 = 5′000

50 ⋅ 100 ⋅ 10 = 50′000 50 ⋅ 5 ⋅ 10 = 2′500

75′000 7′500

50 × 100 5 × 10

Fabian Kuhn – Algorithm Theory 19

Structure of an Optimal Parenthesization

• (𝐴ℓ…𝑟): optimal parenthesization of 𝐴ℓ ⋅ … ⋅ 𝐴𝑟

For some 1 ≤ 𝑘 < 𝑛: 𝑨𝟏…𝒏 = 𝑨𝟏…𝒌 ⋅ 𝑨𝒌+𝟏…𝒏

• Any optimal solution contains optimal solutions for sub-problems

• Assume matrix 𝐴𝑖 is a 𝑑𝑖−1 × 𝑑𝑖 -matrix

• Cost to solve sub-problem 𝐴ℓ ⋅ … ⋅ 𝐴𝑟 , ℓ ≤ 𝑟 optimally: 𝐶(ℓ, 𝑟)

• Then:
𝐶 ℓ, 𝑟 = min

ℓ≤𝑘<𝑟
𝐶 ℓ, 𝑘 + 𝐶 𝑘 + 1, 𝑟 + 𝑑ℓ−1𝑑𝑘𝑑𝑟

𝐶 ℓ, ℓ = 0

Fabian Kuhn – Algorithm Theory 20

Recursive Computation of Opt. Solution

Compute 𝐴1 ⋅ 𝐴2 ⋅ 𝐴3 ⋅ 𝐴4 ⋅ 𝐴5:

𝐶(1,2) 𝐶(1,3) 𝐶(1,4) 𝐶(2,5)

𝐶(2,3)𝐶(1,2)

𝐶(3,5) 𝐶(4,5)

𝐶(1,3)𝐶(1,2) 𝐶(2,4)𝐶(2,3) 𝐶(2,3)𝐶(2,4) 𝐶(4,5)𝐶(3,5)

𝐶(4,5)𝐶(3,4)

𝐶(2,3)𝐶(1,2) 𝐶(3,4)𝐶(2,3) 𝐶(3,4)𝐶(2,3) 𝐶(4,5)𝐶(3,4)

𝐶(1,5)

Fabian Kuhn – Algorithm Theory 21

Using Meomization

Compute 𝐴1 ⋅ 𝐴2 ⋅ 𝐴3 ⋅ 𝐴4 ⋅ 𝐴5:

Compute 𝐴1 ⋅ … ⋅ 𝐴𝑛:

• Each 𝐶(𝑖, 𝑗), 𝑖 < 𝑗 is computed exactly once → 𝑂 𝑛2 values

• Each 𝐶(𝑖, 𝑗) dir. depends on 𝐶(𝑖, 𝑘), 𝐶(𝑘, 𝑗) for 𝑖 < 𝑘 < 𝑗

Cost for each 𝐶(𝑖, 𝑗): 𝑂(𝑛)→ overall time: 𝑶 𝒏𝟑

𝐶(1,2) 𝐶(2,3) 𝐶(3,4) 𝐶(4,5)

𝐶(1,3) 𝐶(2,4) 𝐶(3,5)

𝐶(1,4) 𝐶(2,5)

𝐶(1,5)

Fabian Kuhn – Algorithm Theory 22

Remarks about matrix-chain multiplication

1. There is an algorithm that determines an optimal parenthesization in time

𝑂 𝑛 ⋅ log 𝑛 .
[Hu, Shing; 1980]

2. There is a linear time algorithm that determines a parenthesization using at most

1.155 ⋅ 𝐶(1, 𝑛)

multiplications.
[Hu, Shing; 1981]

Fabian Kuhn – Algorithm Theory 23

Knapsack

• 𝑛 items 1,… , 𝑛, each item has weight 𝑤𝑖 and value 𝑣𝑖
• Knapsack (bag) of capacity 𝑊

• Goal: pack items into knapsack such that total weight is at most 𝑊 and total value is maximized:

max෍

𝑖∈𝑆

𝑣𝑖

s. t. 𝑆 ⊆ 1,… , 𝑛 and ෍

𝑖∈𝑆

𝑤𝑖 ≤ 𝑊

• E.g.: jobs of length 𝑤𝑖 and value 𝑣𝑖, server available for 𝑊 time units, try to execute a set of jobs
that maximizes the total value

Fabian Kuhn – Algorithm Theory 24

Recursive Structure?

• Optimal solution: 𝒪

• If 𝑛 ∉ 𝒪: OPT 𝑛 = OPT 𝑛 − 1

• What if 𝑛 ∈ 𝒪?

• Taking 𝑛 gives value 𝑣𝑛
• But, 𝑛 also occupies space 𝑤𝑛 in the bag (knapsack)

• There is space for 𝑊 −𝑤𝑛 total weight left!

OPT 𝑛 = 𝑣𝑛 + optimal solution with first 𝑛 − 1 items
and knapsack of capacity 𝑊 − 𝑤𝑛

This is not just
OPT(𝑛 − 1).

Fabian Kuhn – Algorithm Theory 25

A More Complicated Recursion

𝐎𝐏𝐓(𝒌, 𝒙): value of optimal solution with items 1,… , 𝑘
and knapsack of capacity 𝑥

Recursion: 𝐎𝐏𝐓 𝒌, 𝒙 = 𝐦𝐚𝐱 𝐎𝐏𝐓 𝒌 − 𝟏, 𝒙 , 𝒗𝒌 + 𝐎𝐏𝐓 𝒌 − 𝟏, 𝒙 − 𝒘𝒌

Initialization:

• OPT 0, 𝑥 = 0

• no items ⟹ value 0

• OPT 𝑘, 0 = 0

• capacity 0⟹ value 0

opt. solution when
not using item 𝑘

remaining
capacity

opt. solution when using item 𝑘,
only possible if 𝑥 ≥ 𝑤𝑘

Number of subproblems:
• arbitrary weights: ≤ 𝑛 ⋅ 2𝑛

– In this case, the problem is NP-hard.

• integer weights: 𝑛 ⋅ 𝑊
– 2 cases per subproblem

⟹ running time: 𝑶 𝒏 ⋅ 𝑾
Fabian Kuhn – Algorithm Theory 26

Dynamic Programming Algorithm

Set up table for all possible OPT(𝑘, 𝑥)-values

• Assume that all weights 𝑤𝑖 are integers!

𝟎

𝟏

𝟐

⋮

𝒏

𝟎 𝟏 𝟐 ⋮ 𝑾

Row 𝒌, column 𝒙:

𝑶𝑷𝑻(𝒌, 𝒙)

𝟑

𝟑

𝒙

𝒌

0 0 0 0 0 0 0 0 0 0 0 0

0

0

0

0

0

0

0

= 𝑤𝑘

Fabian Kuhn – Algorithm Theory 27

Example

• 8 items: 3,2 , 2,4 , 4,1 , 5,6 , 3,3 , 4,3 , 5, 4 , 6,6
Knapsack capacity: 12

• OPT 𝑘, 𝑥 = max OPT 𝑘 − 1, 𝑥 , OPT 𝑘 − 1, 𝑥 − 𝑤𝑘 + 𝑣𝑘

weight value

𝟏

𝟐

𝟑

𝟖

𝟏 𝟐 𝟑 𝟏𝟐𝟒 𝟓 𝟔 𝟕 𝟖 𝟗 𝟏𝟎 𝟏𝟏

𝟒

𝟓

𝟔

𝟕

0 0 2 2 2 2 2 2 2 2 2 2

0 4 4 4 6 6 6 6 6 6 6 6

0 4 4 4 6 6 6 6 7 7 7 7

0 4 4 4 6 6 10 10 10 12 12 12

0 4 4 4 7 7 10 10 10 13 13 13

0 4 4 4 7 7 10 10 10 13 13 13

0 4 4 4 7 7 10 10 10 13 13 14

0 4 4 4 7 7 10 10 10 13 13 14

Optimal solution:
Items 2, 4, and 7

Total weight:
2 + 5 + 5 = 12

Total value:
4 + 6 + 4 = 14

Fabian Kuhn – Algorithm Theory 28

Running Time of Knapsack Algorithm

• Size of table: 𝑂(𝑛 ⋅ 𝑊)

• Time per table entry: 𝑂(1)→ overall time: 𝑶(𝒏 ⋅ 𝑾)

• Computing solution (set of items to pick):
Follow ≤ 𝑛 arrows → 𝑂 𝑛 time (after filling table)

• Note: Time depends on 𝑊→ can be exponential in 𝑛…

• And it only works if all weights are integers

• … or can be scaled so that they are integers

Fabian Kuhn – Algorithm Theory 29

Knapsack with Integer Values

• Let’s also consider the case that weights are arbitrary and the values are integers…

• Assume that all item values are integers ∈ 1,… , 𝑉

• Again distinguish two cases depending on if the last item is part of an optimal solution or it isn’t.

Recursive Function:

𝐎𝐏𝐓(𝒌, 𝒙)

only items 1,… , 𝑘 total value exactly 𝑥

min. possible weight

Fabian Kuhn – Algorithm Theory 30

Knapsack with Integer Values

• Assume that all item values are integers ∈ 1,… , 𝑉

Recursive Function:

• 𝐎𝐏𝐓 𝒌, 𝒙 : min. possible weight to achieve exactly value 𝑥
with only items 1,… , 𝑘

• Recursive definition of function 𝐎𝐏𝐓 𝒌, 𝒙

OPT 𝑘, 𝑥 = min OPT 𝑘 − 1, 𝑥 , 𝑤𝑘 + OPT 𝑘 − 1, 𝑥 − 𝑣𝑘

OPT 𝑘, 0 = 0
OPT 0, 𝑥 = ∞ for 𝑥 > 0

• At the end, find maximum 𝑥 such that OPT 𝑛, 𝑥 ≤ 𝑊

• Number of subproblems ≤ 𝑛2 ⋅ 𝑉 ⟹ running time 𝑶 𝒏𝟐 ⋅ 𝑽

• Max. required 𝑥-value: 𝑥 ≤ σ𝑖=1
𝑛 𝑣𝑘 ≤ 𝑛 ⋅ 𝑉

only possible if 𝑥 ≥ 𝑣𝑘

Fabian Kuhn – Algorithm Theory 31

Dynamic Programming : Summary

Dynamic Programming:

• Use recursion together with memorization

• Applicable if #recursive subproblems is moderately small

Additional Applications of Dynamic Programming:

• The idea can be applied to a wide range of problems

• Examples, beyond what we already saw:

• Shortest path algorithms such as Bellman-Ford and Dijkstra can be seen as applications of DP

• String comparison & matching problems such as edit distance, approximate text search, Biological
sequence alignment problems, etc.

• Further string problems: longest common subsequence, etc.

• Hidden Markov model analysis

• And many more …

Fabian Kuhn – Algorithm Theory 32

