universitatfreiburg

Algorithm Theory — WS 2024/25

Chapter 3 : Dynamic Programming 2
(Knapsack)

Fabian Kuhn
Dept. of Computer Science
Algorithms and Complexity

Dynamic Programming

,Memoization” for increasing the efficiency of a recursive solution:

* Only the first time a sub-problem is encountered, its solution is computed and then stored in a table. Each
subsequent time that the subproblem is encountered, the value stored in the table is simply looked up and
returned (without repeated computation!).

Dynamic programming / memoization can be applied if

e Optimal solution contains optimal solutions to sub-problems
(recursive structure)

* Number of sub-problems that need to be considered is small

Time is at least linear in the number of subproblems.

Computing the solution:

* For each sub-problem, store how the value is obtained (according to which recursive rule).

universitatfreiburg Fabian Kuhn — Algorithm Theory

Knapsack

nitems 1, ..., n, each item has weight w; and value v;

Knapsack (bag) of capacity W

Goal: pack items into knapsack such that total weight is at most W and total value is maximized:
maxz Vi
i€S

s.t. S€{1,..,n}and ZWi <Ww

IES

E.g.: jobs of length w; and value v;, server available for W time units, try to execute a set of jobs
that maximizes the total value

universitatfreiburg Fabian Kuhn — Algorithm Theory

Recursive Structure?

e Optimal solution: O
e Ifné& O0:0PT(n) = OPT(n — 1)

* Whatifn € 07
* Taking n gives value v,
* But, n also occupies space wy, in the bag (knapsack)
* There is space for W — w,, total weight left!

OPT(n) = v,, + optimal solution with first n — 1 items
and knapsack of capacity W — w,,

This is not just
OPT(n — 1).

universitatfreiburg Fabian Kuhn — Algorithm Theory

A More Complicated Recursion

OPT(k, x): value of optimal solution with items 1, ..., k
and knapsack of capacity x

opt. solution when using item k,
only possible if x = wy,

Recursion: OPT(k, x) = max{OPT(k — 1, x),'vk + OPT(k—1,x — wk)‘}

l_'_l
opt. solution when remaining
Initialization: not using item k capacity

« OPT(0,x) =0

_ Number of subproblems:
* noitems = value 0

e arbitrary weights: < n - 2"
« OPT(k,0) =0 — In this case, the problem is NP-hard.

 capacity 0 = value 0 * integer weights:n - W
— 2 cases per subproblem

= running time: O0(n - W)

universitatfreiburg Fabian Kuhn — Algorithm Theory

Dynamic Programming Algorithm

Set up table for all possible OPT(k, x)-values

* Assume that all weights w; are integers!

w N = O

universitatfreiburg

0 1 2 3
0(0[0]0]0 00O
0
0
0 = wy
0 o

e Rt s e e S B

0
0

Fabian Kuhn — Algorithm Theory

Example

« 8items: (3,2),(2,4), (4,1),(5,6),(3,3),(4,3),(5,4),(6,6)

Knapsack capacity: 12

Optimal solution:

ltems 2, 4, and 7

Total weight:
24+54+5=12

Total value:
4+6+4=14

universitatfreiburg

weight value
* OPT(k,x) = max{OPT(k — 1,x),0PT(k — 1,x — wy) + v} }

Cb\lO\W-PWNfH

1 2 3 45 6 7 8 9 10 11 12
0102222022222]2
\

04 4 4|6|6|6|6[6|66 6
0 414l4l6l6|6|6|7|7]|7 7

E‘

0|4 |4|4/|6]|6[10[10|10 12 12 12
0 |4|4|4|7|7|10]/10]10]13|13 |13
0|4 |4|4|7]|7|10]10]10|13]13 |13
0 (4|4 4|7 |7 |10 10|10|13[137T4
0|4 |4|4|7]|7 10101013 |13 14

Fabian Kuhn — Algorithm Theory

Running Time of Knapsack Algorithm

Size of table: O(n - W)

Time per table entry: 0(1) = overall time: O(n - W)

Computing solution (set of items to pick):
Follow < n arrows =2 0(n) time (after filling table)

Note: Time depends on W —> can be exponential in n...

And it only works if all weights are integers
e ...orcan be scaled so that they are integers

universitatfreiburg Fabian Kuhn — Algorithm Theory

Knapsack with Integer Values

* Let’s also consider the case that weights are arbitrary and the values are integers...

* Assume that all item values are integers € {1, ..., V}

e Again distinguish two cases depending on if the last item is part of an optimal solution or it isn’t.

Recursive Function:

OPT(k, x)
=
onlyitems 1, ..,k total value exactly x

universitatfreiburg Fabian Kuhn — Algorithm Theory

Knapsack with Integer Values

* Assume that all item values are integers € {1, ..., V}

Recursive Function:

« OPT(k, x): min. possible weight to achieve exactly value x
with only items 1, ..., k

* Recursive definition of function OPT (k, x)
OPT(k,x) = min{OPT(k — 1,x),w; + OPT(k — 1,x — v})}
OPT(k,0) =0

OPT(0,x) = o forx > 0 only possible if x > v,

* At the end, find maximum x such that OPT(n,x) < W

* Number of subproblems < n? - V = running time O(n2 - V)
« Max. required x-value: x <YY" vy <n-V

universitatfreiburg Fabian Kuhn — Algorithm Theory

10

Dynamic Programming : Summary

Dynamic Programming:
* Use recursion together with memorization
» Applicable if #recursive subproblems is moderately small

Additional Applications of Dynamic Programming:
* The idea can be applied to a wide range of problems

 Examples, beyond what we already saw:
* Shortest path algorithms such as Bellman-Ford and Dijkstra can be seen as applications of DP

String comparison & matching problems such as edit distance, approximate text search, Biological
sequence alignment problems, etc.

Further string problems: longest common subsequence, etc.

Hidden Markov model analysis

And many more ...

universitatfreiburg Fabian Kuhn — Algorithm Theory

11

