
Algorithm Theory – WS 2024/25

Chapter 3 : Dynamic Programming 2
(Knapsack)

Fabian Kuhn
Dept. of Computer Science
Algorithms and Complexity

Dynamic Programming

„Memoization“ for increasing the efficiency of a recursive solution:
• Only the first time a sub-problem is encountered, its solution is computed and then stored in a table. Each

subsequent time that the subproblem is encountered, the value stored in the table is simply looked up and
returned (without repeated computation!).

Dynamic programming / memoization can be applied if
• Optimal solution contains optimal solutions to sub-problems

(recursive structure)
• Number of sub-problems that need to be considered is small

Time is at least linear in the number of subproblems.

Computing the solution:
• For each sub-problem, store how the value is obtained (according to which recursive rule).

Fabian Kuhn – Algorithm Theory 2

Knapsack

• 𝑛 items 1,… , 𝑛, each item has weight 𝑤! and value 𝑣!
• Knapsack (bag) of capacity 𝑊

• Goal: pack items into knapsack such that total weight is at most 𝑊 and total value is maximized:

max+
!∈#

𝑣!

s. t. 𝑆 ⊆ 1,… , 𝑛 and +
!∈#

𝑤! ≤ 𝑊

• E.g.: jobs of length 𝑤! and value 𝑣!, server available for 𝑊 time units, try to execute a set of jobs
that maximizes the total value

Fabian Kuhn – Algorithm Theory 3

Recursive Structure?

• Optimal solution: 𝒪

• If 𝑛 ∉ 𝒪: OPT 𝑛 = OPT 𝑛 − 1

• What if 𝑛 ∈ 𝒪?
• Taking 𝑛 gives value 𝑣!
• But, 𝑛 also occupies space 𝑤! in the bag (knapsack)
• There is space for 𝑊 −𝑤! total weight left!

OPT 𝑛 = 𝑣$ + optimal solution with Dirst 𝑛 − 1 items
and knapsack of capacity 𝑊 − 𝑤$

This is not just
OPT(𝑛 − 1).

Fabian Kuhn – Algorithm Theory 4

A More Complicated Recursion

𝐎𝐏𝐓(𝒌, 𝒙): value of optimal solution with items 1,… , 𝑘
and knapsack of capacity 𝑥

Recursion: 𝐎𝐏𝐓 𝒌, 𝒙 = 𝐦𝐚𝐱 𝐎𝐏𝐓 𝒌 − 𝟏, 𝒙 , 𝒗𝒌 + 𝐎𝐏𝐓 𝒌 − 𝟏, 𝒙 − 𝒘𝒌

Initialization:
• OPT 0, 𝑥 = 0

• no items ⟹ value 0

• OPT 𝑘, 0 = 0
• capacity 0⟹ value 0

opt. solution when
not using item 𝑘

remaining
capacity

opt. solution when using item 𝑘,
only possible if 𝑥 ≥ 𝑤"

Number of subproblems:
• arbitrary weights: ≤ 𝑛 ⋅ 2$

– In this case, the problem is NP-hard.

• integer weights: 𝑛 ⋅ 𝑊
– 2 cases per subproblem

⟹ running time: 𝑶 𝒏 ⋅ 𝑾
Fabian Kuhn – Algorithm Theory 5

Dynamic Programming Algorithm

Set up table for all possible OPT(𝑘, 𝑥)-values
• Assume that all weights 𝑤! are integers!

𝟎

𝟏

𝟐

⋮

𝒏

𝟎 𝟏 𝟐 ⋮ 𝑾

Row 𝒌, column 𝒙:

𝑶𝑷𝑻(𝒌, 𝒙)

𝟑

𝟑

𝒙

𝒌

0 0 0 0 0 0 0 0 0 0 0 0

0

0

0

0

0

0

0

= 𝑤&

Fabian Kuhn – Algorithm Theory 6

Example
• 8 items: 3,2 , 2,4 , 4,1 , 5,6 , 3,3 , 4,3 , 5, 4 , 6,6

Knapsack capacity: 12

• OPT 𝑘, 𝑥 = max OPT 𝑘 − 1, 𝑥 , OPT 𝑘 − 1, 𝑥 − 𝑤& + 𝑣&
weight value

𝟏

𝟐

𝟑

𝟖

𝟏 𝟐 𝟑 𝟏𝟐𝟒 𝟓 𝟔 𝟕 𝟖 𝟗 𝟏𝟎 𝟏𝟏

𝟒

𝟓

𝟔

𝟕

0 0 2 2 2 2 2 2 2 2 2 2

0 4 4 4 6 6 6 6 6 6 6 6

0 4 4 4 6 6 6 6 7 7 7 7

0 4 4 4 6 6 10 10 10 12 12 12

0 4 4 4 7 7 10 10 10 13 13 13

0 4 4 4 7 7 10 10 10 13 13 13

0 4 4 4 7 7 10 10 10 13 13 14

0 4 4 4 7 7 10 10 10 13 13 14

Optimal solution:
Items 2, 4, and 7

Total weight:
2 + 5 + 5 = 12

Total value:
4 + 6 + 4 = 14

Fabian Kuhn – Algorithm Theory 7

Running Time of Knapsack Algorithm

• Size of table: 𝑂(𝑛 ⋅ 𝑊)

• Time per table entry: 𝑂(1)à overall time: 𝑶(𝒏 ⋅ 𝑾)

• Computing solution (set of items to pick):
Follow ≤ 𝑛 arrows à 𝑂 𝑛 time (after filling table)

• Note: Time depends on 𝑊à can be exponential in 𝑛…
• And it only works if all weights are integers

• … or can be scaled so that they are integers

Fabian Kuhn – Algorithm Theory 8

Knapsack with Integer Values

• Let’s also consider the case that weights are arbitrary and the values are integers…

• Assume that all item values are integers ∈ 1,… , 𝑉

• Again distinguish two cases depending on if the last item is part of an optimal solution or it isn’t.

Recursive Function:

𝐎𝐏𝐓(𝒌, 𝒙)

only items 1,… , 𝑘 total value exactly 𝑥

min. possible weight

Fabian Kuhn – Algorithm Theory 9

Knapsack with Integer Values

• Assume that all item values are integers ∈ 1,… , 𝑉

Recursive Function:
• 𝐎𝐏𝐓 𝒌, 𝒙 : min. possible weight to achieve exactly value 𝑥

with only items 1,… , 𝑘

• Recursive definition of function 𝐎𝐏𝐓 𝒌, 𝒙
OPT 𝑘, 𝑥 = min OPT 𝑘 − 1, 𝑥 , 𝑤& + OPT 𝑘 − 1, 𝑥 − 𝑣&
OPT 𝑘, 0 = 0
OPT 0, 𝑥 = ∞ for 𝑥 > 0

• At the end, find maximum 𝑥 such that OPT 𝑛, 𝑥 ≤ 𝑊

• Number of subproblems ≤ 𝑛' ⋅ 𝑉 ⟹ running time 𝑶 𝒏𝟐 ⋅ 𝑽
• Max. required 𝑥-value: 𝑥 ≤ ∑#$%! 𝑣" ≤ 𝑛 ⋅ 𝑉

only possible if 𝑥 ≥ 𝑣"

Fabian Kuhn – Algorithm Theory 10

Dynamic Programming : Summary

Dynamic Programming:
• Use recursion together with memorization
• Applicable if #recursive subproblems is moderately small

Additional Applications of Dynamic Programming:
• The idea can be applied to a wide range of problems
• Examples, beyond what we already saw:

• Shortest path algorithms such as Bellman-Ford and Dijkstra can be seen as applications of DP
• String comparison & matching problems such as edit distance, approximate text search, Biological

sequence alignment problems, etc.
• Further string problems: longest common subsequence, etc.
• Hidden Markov model analysis
• And many more …

Fabian Kuhn – Algorithm Theory 11

