universitätfreiburg

Algorithm Theory – WS 2024/25

Chapter 3 : Dynamic Programming 2 (Knapsack)

Fabian Kuhn Dept. of Computer Science Algorithms and Complexity

Dynamic Programming

"Memoization" for increasing the efficiency of a recursive solution:

• Only the *first time* a sub-problem is encountered, its solution is computed and then stored in a table. Each subsequent time that the subproblem is encountered, the value stored in the table is simply looked up and returned (without repeated computation!).

Dynamic programming / memoization can be applied if

- Optimal solution contains optimal solutions to sub-problems (recursive structure)
- Number of sub-problems that need to be considered is small

Time is at least linear in the number of subproblems.

Computing the solution:

• For each sub-problem, store how the value is obtained (according to which recursive rule).

universität freiburg

Knapsack

- *n* items 1, ..., *n*, each item has weight *w_i* and value *v_i*
- Knapsack (bag) of capacity W
- Goal: pack items into knapsack such that total weight is at most W and total value is maximized:

$$\max \sum_{i \in S} v_i$$

s.t. $S \subseteq \{1, ..., n\}$ and $\sum_{i \in S} w_i \le W$

 E.g.: jobs of length w_i and value v_i, server available for W time units, try to execute a set of jobs that maximizes the total value

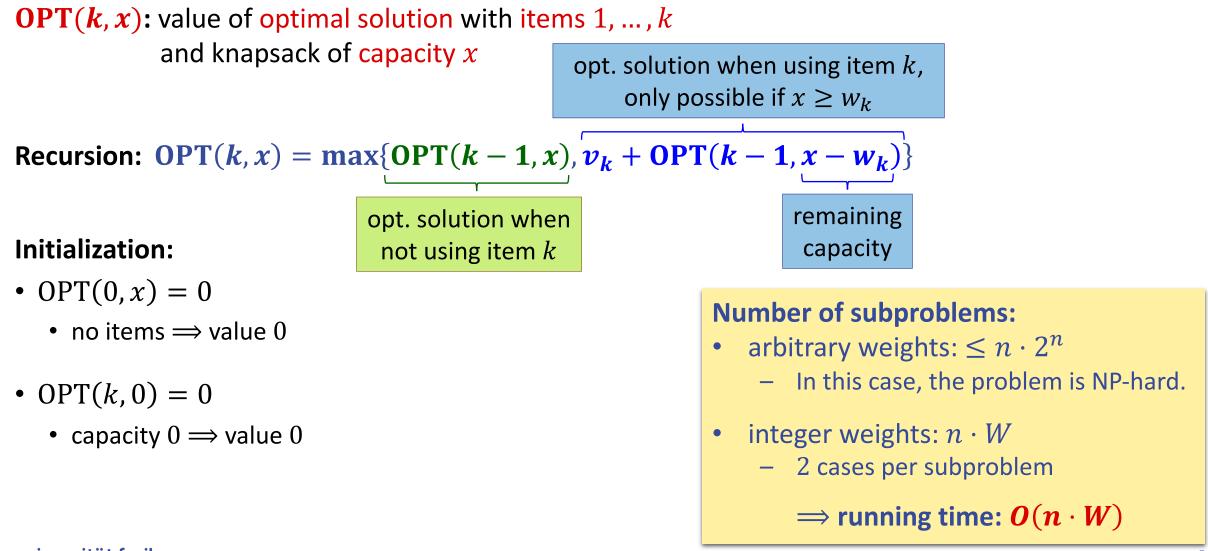
Recursive Structure?

- Optimal solution: ${\mathcal O}$
- If $n \notin \mathcal{O}$: OPT(n) = OPT(n-1)
- What if $n \in \mathcal{O}$?
 - Taking n gives value v_n
 - But, n also occupies space w_n in the bag (knapsack)
 - There is space for $W w_n$ total weight left!

```
OPT(n) = v_n + optimal solution with first n - 1 items
and knapsack of capacity W - w_n
```

This is not just
$$OPT(n-1)$$
.

A More Complicated Recursion

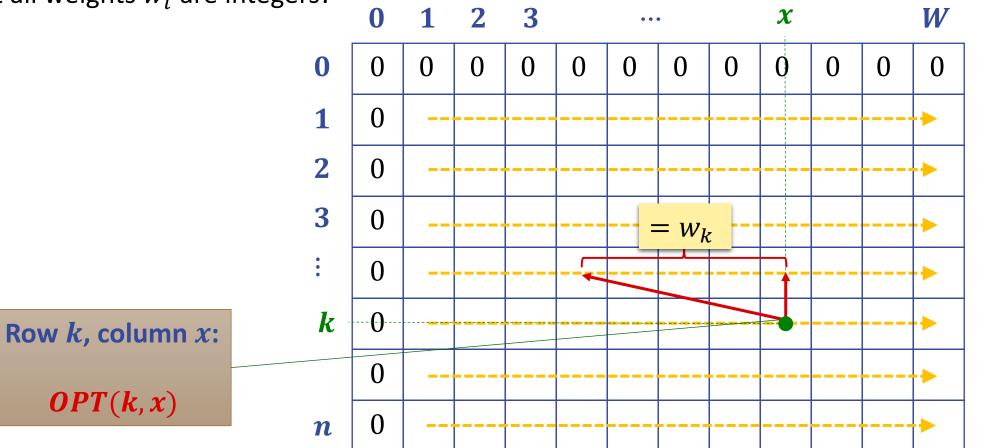


universitätfreiburg

Dynamic Programming Algorithm

Set up table for all possible OPT(k, x)-values

• Assume that all weights w_i are integers!



Example

- 8 items: (3,2), (2,4), (4,1), (5,6), (3,3), (4,3), (5,4), (6,6) Knapsack capacity: 12 weight value
- $OPT(k, x) = max\{OPT(k 1, x), OPT(k 1, x w_k) + v_k\}$

Optimal solution: Items 2, 4, and 7								
Total weight: $2 + 5 + 5 = 12$								
Total value: $4 + 6 + 4 = 14$								

	1	2	3	4	5	6	7	8	9	10	11	12
1	0	0	2	2	2	2	2	2	2	2	2	2
2	0	4	4	4	6	6	6	6	6	6	6	6
3	0	4	4	4	6	6	6	6	7	7	7	7
4	0	4	4	4	6	6	10	10	10	12	12	12
5	0	4	4	4	7	7	10	10	10	13	13	13
6	0	4	4	4	7	7	10	10	10	13	13	13
7	0	4	4	4	7	7	10	10	10	13	13	14
8	0	4	4	4	7	7	10	10	10	13	13	14

universitätfreiburg

Fabian Kuhn – Algorithm Theory

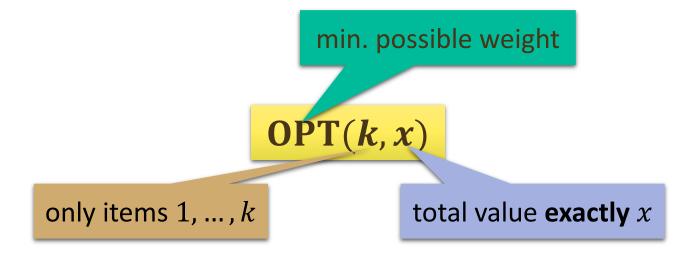
Running Time of Knapsack Algorithm

- Size of table: $O(n \cdot W)$
- Time per table entry: $O(1) \rightarrow \text{overall time: } O(n \cdot W)$
- Computing solution (set of items to pick): Follow $\leq n$ arrows $\rightarrow O(n)$ time (after filling table)
- Note: Time depends on $W \rightarrow$ can be exponential in n...
- And it only works if all weights are integers
 - ... or can be scaled so that they are integers

Knapsack with Integer Values

- Let's also consider the case that weights are arbitrary and the values are integers...
- Assume that all item values are integers $\in \{1, ..., V\}$
- Again distinguish two cases depending on if the last item is part of an optimal solution or it isn't.

Recursive Function:



Knapsack with Integer Values

• Assume that all item values are integers $\in \{1, ..., V\}$

Recursive Function:

- **OPT**(*k*, *x*): min. possible weight to achieve exactly value *x* with only items 1, ..., *k*
- Recursive definition of function OPT(k, x)

$$OPT(k, x) = \min\{OPT(k - 1, x), w_k + OPT(k - 1, x - v_k)\}$$

$$OPT(k, 0) = 0$$

$$OPT(0, x) = \infty \text{ for } x > 0$$

only possible if $x \ge u$

- At the end, find maximum x such that $OPT(n, x) \le W$
- Number of subproblems $\leq n^2 \cdot V \Rightarrow$ running time $O(n^2 \cdot V)$
 - Max. required x-value: $x \leq \sum_{i=1}^{n} v_k \leq n \cdot V$

universität freiburg

Dynamic Programming : Summary

Dynamic Programming:

- Use recursion together with memorization
- Applicable if #recursive subproblems is moderately small

Additional Applications of Dynamic Programming:

- The idea can be applied to a wide range of problems
- Examples, beyond what we already saw:
 - Shortest path algorithms such as Bellman-Ford and Dijkstra can be seen as applications of DP
 - String comparison & matching problems such as edit distance, approximate text search, Biological sequence alignment problems, etc.
 - Further string problems: longest common subsequence, etc.
 - Hidden Markov model analysis
 - And many more ...