universitätfreiburg

Algorithm Theory – WS 2024/25

Chapter 4 : Amortized Analysis

Fabian Kuhn Dept. of Computer Science Algorithms and Complexity

Amortization

- Consider sequence o₁, o₂, ..., o_n of n operations (typically performed on some data structure D)
- **t**_i: execution time of operation *o*_i
- $T \coloneqq t_1 + t_2 + \dots + t_n$: total execution time
- The execution time of a single operation might vary within a large range (e.g., $t_i \in [1, O(i)]$)
- The worst case overall execution time might still be small
 - → average execution time per operation might be small in the worst case, even if single operations can be expensive

Analysis of Algorithms

• Best case

Worst case

• Average case

The best case usually does not occur and is not really interesting.

The **standard** way of algorithm analysis.

Assume that the input is **random** according to some given distribution.

Amortized worst case

Average cost per operation in a worst case sequence of operations

 a form of worst-case analysis for sequences of operations

Example 1: Augmented Stack

Stack Data Type: Operations

- S. push(x) : inserts x on top of stack
- *S*.pop() : removes and returns top element

Complexity of Stack Operations

• In all standard implementations: O(1)

Additional Operation

- **S.multipop(k)** : remove and return top k elements
- Complexity: O(k)

What is the amortized complexity of these operations?

Intuitively: amortized cost per operation is constant

- We can only delete items from *S* that were previously pushed to *S*.
- The total time for deleting is not more than for pushing.

Augmented Stack: Amortized Cost

Amortized Cost

- Sequence of operations i = 1, 2, 3, ..., n
- Actual cost of op. *i*: *t_i*
- Amortized cost of op. i is a_i if for every possible seq. of op.,

$$T = \sum_{i=1}^{n} t_i \le \sum_{i=1}^{n} a_i$$

Actual Cost of Augmented Stack Operations

- S. push(x), S. pop() : actual cost $t_i = O(1)$
- S. multipop(k) : actual cost $t_i = O(k)$
- Amortized cost of all three operations is constant
 - The total number of "popped" elements cannot be more than the total number of "pushed" elements:
 cost for pop/multipop < cost for push

Augmented Stack: Amortized Cost

Amortized Cost

$$T = \sum_{i} t_i \le \sum_{i} a_i$$

Actual Cost of Augmented Stack Operations

- *S*. push(*x*), *S*. pop(): actual cost $t_i \le c$
- *S*. multipop(*k*) : actual cost $t_i \leq c \cdot k$

n operations: *p* push operations, the rest are pop and multipop op.

- $p \le n$ push op. \Rightarrow total push cost $\le c \cdot p$
- total #deleted elem. $\leq p$

$$\Rightarrow \text{total pop/multipop cost} \le c \cdot p$$

$$\Rightarrow \text{total cost} \le 2 \cdot c \cdot p$$

• Average cost per operation $\leq \frac{2cp}{n} \leq \frac{2cp}{p} = 2c$

Example 2: Binary Counter

Incrementing a binary counter: determine the bit flip cost:

Operation	Counter Value	Cost
	00000	
1	00001	1
2	000 10	2
3	0001 1	1
4	00 100	3
5	0010 <mark>1</mark>	1
6	001 <mark>10</mark>	2
7	00111	1
8	01000	4
9	0100 <mark>1</mark>	1
10	010 <mark>10</mark>	2
11	0101 <mark>1</mark>	1
12	01 100	3
13	0110 <mark>1</mark>	1

Accounting Method

Observation:

• Each increment flips exactly one 0 into a 1

 $00100\mathbf{0}1111 \Longrightarrow 00100\mathbf{1}0000$

Idea:

- Have a bank account (with initial amount 0)
- Paying x to the bank account costs x
- Take "money" from account to pay for expensive operations

Applied to binary counter:

- Flip from 0 to 1: pay 1 to bank account (cost: 2)
- Flip from 1 to 0: take 1 from bank account (cost: 0)
- Amount on bank account = number of ones \rightarrow We always have enough "money" to pay!

Potential Function Method

- Most generic and elegant way to do amortized analysis!
 - But, also more abstract than the others...
- State of data structure / system: $S \in S$ (state space) **Potential function** $\Phi: S \to \mathbb{R}_{\geq 0}$
- Operation *i*:
 - **t**_i: actual cost of operation *i*
 - S_i : state after execution of operation *i* (S_0 : initial state)
 - $\Phi_i \coloneqq \Phi(S_i)$: potential after exec. of operation *i*
 - *a_i*: amortized cost of operation *i*:

$$a_i \coloneqq t_i + \Phi_i - \Phi_{i-1}$$

Potential Function Method

Operation *i*:

actual cost: t_i amortized cost: $a_i = t_i + \Phi_i - \Phi_{i-1}$

$$t_i = a_i + \Phi_{i-1} - \Phi_i$$

Overall cost:

$$T \coloneqq \sum_{i=1}^{n} t_{i} = \left(\sum_{i=1}^{n} a_{i}\right) + \Phi_{0} - \Phi_{n} \leq \left(\sum_{i=1}^{n} a_{i}\right) + \Phi_{0}.$$

$$\sum_{i=1}^{n} t_{i} = a_{1} + \Phi_{0} - \Phi_{1}$$

$$+ a_{2} + \Phi_{1} - \Phi_{2}$$

$$+ a_{3} + \Phi_{2} - \Phi_{3}$$

$$+ a_{4} + \Phi_{3} \cdots$$

$$\vdots$$

$$+ a_{n-1} + \Phi_{n-1} - \Phi_{n}$$

universitätfreiburg

Fabian Kuhn – Algorithm Theory

Binary Counter: Potential Method

• Potential function:

Φ: number of ones in current counter

- Clearly, $\Phi_0 = 0$ and $\Phi_i \ge 0$ for all $i \ge 0$
- Actual cost t_i :
 - I flip from 0 to 1
 - $t_i 1$ flips from 1 to 0
- Potential difference: $\Phi_i \Phi_{i-1} = 1 (t_i 1) = 2 t_i$
- Amortized cost: $a_i = t_i + \Phi_i \Phi_{i-1} = 2$

Example 3: Dynamic Array

- How to create an array where the size dynamically adapts to the number of elements stored?
 - e.g., Java "ArrayList" or Python "list"

Implementation:

- Initialize with initial size N_0
- Assumptions: Array can only grow by appending new elements at the end
- If array is full, the size of the array is increased by a factor $\beta > 1$

Operations (array of size *N***):**

- read / write: actual cost O(1)
- append: actual cost is O(1) if array is not full, otherwise the append cost is $O(\beta \cdot N)$ (new array size)

Example 3: Dynamic Array

Notation:

- n: number of elements stored
- N: current size of array

Cost
$$t_i$$
 of i^{th} append operation: $t_i = \begin{cases} 1 & \text{if } n < N \\ \beta \cdot N & \text{if } n = N \end{cases}$

Claim: Amortized append cost is O(1)

Potential function Φ ?

- should allow to pay expensive append operations by cheap ones
- when array is full, Φ has to be large
- immediately after increasing the size of the array, Φ should be small again

Dynamic Array: Potential Function

Cost
$$t_i$$
 of i^{th} append operation: $t_i = \begin{cases} 1 & \text{if } n < N \\ \beta \cdot N & \text{if } n = N \end{cases}$

$$n & N \\ M = \beta \cdot n \\ N = N \\ M = N \end{cases} \quad \Phi \text{ small } (\Phi = 0) \qquad N = N_0 \\ n = 0 \\ N = 0 \\ We \text{ need: } \Phi \ge 0 \end{cases}$$

Let's try: $\Phi(n, N) = c \cdot (\beta n - N) + c \cdot N_0$

$$c(\beta N - N) \ge \beta N$$
$$c(\beta - 1) \ge \beta$$
$$c \ge \frac{\beta}{\beta - 1}$$

$$\Phi(n,N) = \frac{\beta}{\beta-1} \cdot (\beta n - N + N_0)$$

Dynamic Array: Amortized Cost

Cost t_i of i^{th} append operation: $t_i = \begin{cases} 1 & \text{if } n < N \\ \beta \cdot N & \text{if } n = N \end{cases}$

Potential function:

$$\Phi(n,N) = \frac{\beta}{\beta - 1} \cdot (\beta n - N + N_0)$$

Amortized cost $a_i = t_i + \Phi_i - \Phi_{i-1}$

Case 1 (
$$n < N$$
): $a_i = 1 + \frac{\beta}{\beta - 1} \cdot (\beta(n + 1) - \beta n) = 1 + \frac{\beta^2}{\beta - 1}$

Case 2 (n = N**):** $t_i = \beta n = \beta N$

$$a_i = \beta N + \frac{\beta}{\beta - 1} \cdot \left[\beta (N + 1) - \beta N - (\beta N - N)\right]$$
$$= \beta N + \frac{\beta^2}{\beta - 1} - \frac{\beta}{\beta - 1} \cdot (\beta - 1)N = \frac{\beta^2}{\beta - 1}$$

Amortized cost $\leq 1 + \frac{\beta^2}{\beta - 1}$