
Algorithm Theory – WS 2024/25

Chapter 4 : Amortized Analysis

Fabian Kuhn
Dept. of Computer Science
Algorithms and Complexity

Amortization

• Consider sequence 𝑜!, 𝑜", … , 𝑜# of 𝑛 operations
(typically performed on some data structure 𝐷)

• 𝒕𝒊: execution time of operation 𝑜%
• 𝑻 ≔ 𝒕𝟏 + 𝒕𝟐 +⋯+ 𝒕𝒏: total execution time

• The execution time of a single operation might

vary within a large range (e.g., 𝑡% ∈ [1, 𝑂 𝑖])

• The worst case overall execution time might still be small

à average execution time per operation might be small in
the worst case, even if single operations can be expensive

Fabian Kuhn – Algorithm Theory 2

Analysis of Algorithms

• Best case

• Worst case

• Average case

• Amortized worst case

The best case usually does not occur
and is not really interesting.

The standard way of algorithm analysis.

Assume that the input is random
according to some given distribution.

Average cost per operation in a
worst case sequence of operations
• a form of worst-case analysis for

sequences of operations

Fabian Kuhn – Algorithm Theory 3

Example 1: Augmented Stack

Stack Data Type: Operations
• 𝑆. push(𝑥) : inserts 𝑥 on top of stack
• 𝑆.pop() : removes and returns top element

Complexity of Stack Operations
• In all standard implementations: 𝑂 1

Additional Operation
• 𝑺.multipop(𝒌) : remove and return top 𝑘 elements
• Complexity: 𝑂 𝑘

What is the amortized complexity of these operations?

Intuitively: amortized cost per
operation is constant
• We can only delete items from 𝑆

that were previously pushed to 𝑆.
• The total time for deleting is not

more than for pushing.

Fabian Kuhn – Algorithm Theory 4

Augmented Stack: Amortized Cost

Amortized Cost
• Sequence of operations 𝑖 = 1, 2, 3, … , 𝑛
• Actual cost of op. 𝑖: 𝒕𝒊
• Amortized cost of op. 𝑖 is 𝒂𝒊 if for every possible seq. of op.,

𝑇 =D
%)!

#

𝑡% ≤D
%)!

#

𝑎%

Actual Cost of Augmented Stack Operations
• 𝑆. push 𝑥 , 𝑆. pop() : actual cost 𝑡% = 𝑂(1)
• 𝑆.multipop 𝑘 : actual cost 𝑡% = 𝑂 𝑘
• Amortized cost of all three operations is constant
• The total number of “popped” elements cannot be more than the total number of “pushed” elements:

cost for pop/multipop ≤ cost for push

Fabian Kuhn – Algorithm Theory 5

Augmented Stack: Amortized Cost

Amortized Cost

𝑇 =D
%

𝑡% ≤D
%

𝑎%

Actual Cost of Augmented Stack Operations
• 𝑆. push 𝑥 , 𝑆. pop(): actual cost 𝒕𝒊 ≤ 𝒄
• 𝑆.multipop 𝑘 : actual cost 𝒕𝒊 ≤ 𝒄 ⋅ 𝒌

𝒏 operations: 𝑝 push operations, the rest are pop and multipop op.

• 𝑝 ≤ 𝑛 push op. ⟹ total push cost ≤ 𝑐 ⋅ 𝑝
• total #deleted elem. ≤ 𝑝 ⟹ total pop/multipop cost ≤ 𝑐 ⋅ 𝑝

⟹ total cost ≤ 2 ⋅ 𝑐 ⋅ 𝑝

• Average cost per operation ≤
𝟐𝒄𝒑
𝒏

≤
𝟐𝒄𝒑
𝒑

= 𝟐𝒄

Fabian Kuhn – Algorithm Theory 6

Example 2: Binary Counter

Incrementing a binary counter:
determine the bit flip cost:

7Fabian Kuhn – Algorithm Theory

Operation Counter Value Cost

00000

1 00001 1

2 00010 2

3 00011 1

4 00100 3

5 00101 1

6 00110 2

7 00111 1

8 01000 4

9 01001 1

10 01010 2

11 01011 1

12 01100 3

13 01101 1

Accounting Method

Observation:
• Each increment flips exactly one 0 into a 1

00100𝟎1111 ⟹ 00100𝟏0000

Idea:
• Have a bank account (with initial amount 0)
• Paying 𝑥 to the bank account costs 𝑥
• Take “money” from account to pay for expensive operations

Applied to binary counter:
• Flip from 0 to 1: pay 1 to bank account (cost: 2)
• Flip from 1 to 0: take 1 from bank account (cost: 0)
• Amount on bank account = number of ones à We always have enough “money” to pay!

Fabian Kuhn – Algorithm Theory 8

Accounting Method

9Fabian Kuhn – Algorithm Theory

Op. Counter Cost To Bank From Bank Net Cost Balance
0 0 0 0 0 0

1 0 0 0 0 1 1 1 0 2 1
2 0 0 0 1 0 2 1 1 2 1
3 0 0 0 1 1 1 1 0 2 2
4 0 0 1 0 0 3 1 2 2 1
5 0 0 1 0 1 1 1 0 2 2
6 0 0 1 1 0 2 1 1 2 2
7 0 0 1 1 1 1 1 0 2 3
8 0 1 0 0 0 4 1 3 2 1
9 0 1 0 0 1 1 1 0 2 2

10 0 1 0 1 0 2 1 1 2 2

C T F A B ≥ 0+ − =
B ≥ 0

⟹ A ≥ C

amortized cost

Potential Function Method

• Most generic and elegant way to do amortized analysis!
• But, also more abstract than the others…

• State of data structure / system: 𝑆 ∈ 𝒮 (state space)

Potential function 𝚽:𝓢 → ℝ*𝟎

• Operation 𝒊:
• 𝒕𝒊: actual cost of operation 𝑖
• 𝑺𝒊: state after execution of operation 𝑖 (𝑆": initial state)
• 𝚽𝒊 ≔ Φ(𝑆#): potential after exec. of operation 𝑖
• 𝒂𝒊: amortized cost of operation 𝑖:

𝒂𝒊 ≔ 𝒕𝒊 +𝚽𝒊 −𝚽𝒊"𝟏

Fabian Kuhn – Algorithm Theory 10

Potential Function Method

Operation 𝒊:
actual cost: 𝑡% amortized cost: 𝑎% = 𝑡% +Φ% −Φ%,!

Overall cost:

𝑇 ≔D
%)!

#

𝑡% = D
%

#

𝑎% +Φ- −Φ# ≤ D
%

#

𝑎% +Φ-.

!
#$%

&

𝑡# = 𝑎% +Φ" −Φ%

+ 𝑎' +Φ% −Φ'
+ 𝑎(+Φ' −Φ(
+ 𝑎) +Φ(⋯
⋮
+ 𝑎&*% ⋯ −Φ&*%
+ 𝑎& +Φ&*% −Φ&

𝑡% = 𝑎% +Φ%,! −Φ%

Fabian Kuhn – Algorithm Theory 11

Binary Counter: Potential Method

• Potential function:
𝚽:𝐧𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐨𝐧𝐞𝐬 𝐢𝐧 𝐜𝐮𝐫𝐫𝐞𝐧𝐭 𝐜𝐨𝐮𝐧𝐭𝐞𝐫

• Clearly, Φ- = 0 and Φ% ≥ 0 for all 𝑖 ≥ 0

• Actual cost 𝑡%:
§ 1 flip from 0 to 1
§ 𝑡# − 1 flips from 1 to 0

• Potential difference: Φ% −Φ%,! = 1 − 𝑡% − 1 = 2 − 𝑡%

• Amortized cost: 𝑎% = 𝑡% +Φ% −Φ%,! = 2

Fabian Kuhn – Algorithm Theory 12

Example 3: Dynamic Array

• How to create an array where the size dynamically adapts to the number of elements stored?
• e.g., Java “ArrayList” or Python “list”

Implementation:
• Initialize with initial size 𝑁-
• Assumptions: Array can only grow by appending new elements at the end
• If array is full, the size of the array is increased by a factor 𝛽 > 1

Operations (array of size 𝑵):
• read / write: actual cost 𝑂 1
• append: actual cost is 𝑂(1) if array is not full, otherwise

 the append cost is 𝑂 𝛽 ⋅ 𝑁 (new array size)

Fabian Kuhn – Algorithm Theory 13

Example 3: Dynamic Array

Notation:
• 𝑛: number of elements stored
• 𝑁: current size of array

Cost 𝒕𝒊 of 𝒊𝒕𝒉 append operation: 𝑡% = p 1 if 𝑛 < 𝑁
𝛽 ⋅ 𝑁 if 𝑛 = 𝑁

Claim: Amortized append cost is 𝑂 1

Potential function 𝚽?
• should allow to pay expensive append operations by cheap ones
• when array is full, Φ has to be large
• immediately after increasing the size of the array, Φ should be small again

Fabian Kuhn – Algorithm Theory 14

Dynamic Array: Potential Function

Cost 𝒕𝒊 of 𝒊𝒕𝒉 append operation: 𝑡% = p 1 if 𝑛 < 𝑁
𝛽 ⋅ 𝑁 if 𝑛 = 𝑁

𝑛 𝑁

𝑁 = 𝛽 ⋅ 𝑛
𝑛 = 𝑁

Φ small		(Φ = 0)

Φ large		(Φ ≥ 𝛽𝑁)

Let’s try: Φ 𝑛,𝑁 = 𝑐 ⋅ 𝛽𝑛 − 𝑁 + 𝑐 ⋅ 𝑁$

At the start:

𝑁 = 𝑁"
𝑛 = 0

We need: Φ ≥ 0

𝑐 𝛽𝑁 − 𝑁 ≥ 𝛽𝑁

𝑐 𝛽 − 1 ≥ 𝛽

𝑐 ≥
𝛽

𝛽 − 1 Φ 𝑛,𝑁 =
𝛽

𝛽 − 1
⋅ 𝛽𝑛 − 𝑁 + 𝑁$

Fabian Kuhn – Algorithm Theory 15

Dynamic Array: Amortized Cost

Cost 𝒕𝒊 of 𝒊𝒕𝒉 append operation: 𝑡% = p 1 if 𝑛 < 𝑁
𝛽 ⋅ 𝑁 if 𝑛 = 𝑁

Potential function:

Amortized cost 𝒂𝒊 = 𝒕𝒊 +𝚽𝒊 −𝚽𝒊,𝟏

Case 1 (𝒏 < 𝑵): 𝑎% = 1 + 0
0,!

⋅ 𝛽 𝑛 + 1 − 𝛽𝑛 = 1 + 0!

0,!

Case 2 (𝒏 = 𝑵): 𝑡% = 𝛽𝑛 = 𝛽𝑁

𝑎% = 𝛽𝑁 + 0
0,!

⋅ 𝛽 𝑁 + 1 − 𝛽𝑁 − 𝛽𝑁 − 𝑁

= 𝛽𝑁 + 0!

0,!
− 0

0,!
⋅ 𝛽 − 1 𝑁 = 0!

0,!

Φ 𝑛,𝑁 =
𝛽

𝛽 − 1 ⋅ 𝛽𝑛 − 𝑁 + 𝑁-

Amortized cost ≤ 1 + %!

%"&

Fabian Kuhn – Algorithm Theory 16

