universitätfreiburg

Algorithm Theory – WS 2024/25

Chapter 4 : Amortized Analysis

Fabian Kuhn Dept. of Computer Science Algorithms and Complexity

Amortization

- Consider sequence $o_1, o_2, ..., o_n$ of *n* operations (typically performed on some data structure D)
- t_i : execution time of operation o_i
- $T \coloneqq t_1 + t_2 + \cdots + t_n$: total execution time
- The execution time of a single operation might vary within a large range (e.g., $t_i \in [1, O(i)]$)
- The worst case overall execution time might still be small
	- \rightarrow average execution time per operation might be small in the worst case, even if single operations can be expensive

Analysis of Algorithms

• Best case

• Worst case

• Average case

The best case usually does not occur and is not really interesting.

The **standard** way of algorithm analysis.

Assume that the input is **random** according to some given distribution.

• Amortized worst case

Average cost per operation in a **worst case sequence of operations**

• a form of worst-case analysis for sequences of operations

Example 1: Augmented Stack

Stack Data Type: Operations

- S. push (x) : inserts x on top of stack
- $S.pop()$: removes and returns top element

Complexity of Stack Operations

• In all standard implementations: $O(1)$

Additional Operation

- **S.multipop(** k **)** : remove and return top k elements
- Complexity: $O(k)$

What is the amortized complexity of these operations?

Intuitively: amortized cost per operation is constant

- We can only delete items from S that were previously pushed to S .
- The total time for deleting is not more than for pushing.

Augmented Stack: Amortized Cost

Amortized Cost

- Sequence of operations $i = 1, 2, 3, ..., n$
- Actual cost of op. $i: t_i$
- Amortized cost of op. *i* is a_i if for every possible seq. of op.,

$$
T = \sum_{i=1}^{n} t_i \le \sum_{i=1}^{n} a_i
$$

Actual Cost of Augmented Stack Operations

- S. push (x) , S. pop $()$: actual cost $t_i = O(1)$
- S. multipop (k) : actual cost $t_i = O(k)$
- Amortized cost of all three operations is constant
	- The total number of "popped" elements cannot be more than the total number of "pushed" elements: **cost for pop/multipop** ≤ **cost for push**

universität freiburg

Augmented Stack: Amortized Cost

Amortized Cost

$$
T = \sum_{i} t_i \le \sum_{i} a_i
$$

Actual Cost of Augmented Stack Operations

- S. push (x) , S. pop(): actual cost $t_i \leq c$
- S. multipop (k) : actual cost $t_i \leq c \cdot k$

n operations: p push operations, the rest are pop and multipop op.

- $p \le n$ push op. \Rightarrow total push cost $\le c \cdot p$
-

\n- total #deleted elem.
$$
\leq p
$$
 \Rightarrow total pop/multipop cost $\leq c \cdot p$ \Rightarrow total cost $\leq 2 \cdot c \cdot p$
\n

• **Average cost per operation** [≤] \boldsymbol{n} \leq $\frac{2cp}{2}$ \boldsymbol{p} $=2c$

universität freiburg

Example 2: Binary Counter

Incrementing a binary counter: determine the bit flip cost:

universitätfreiburg

Accounting Method

Observation:

• Each increment flips exactly one 0 into a 1

 $0010001111 \Rightarrow 0010010000$

Idea:

- Have a bank account (with initial amount 0)
- Paying x to the bank account costs x
- Take "money" from account to pay for expensive operations

Applied to binary counter:

- Flip from 0 to 1: pay 1 to bank account (cost: 2)
- Flip from 1 to 0: take 1 from bank account (cost: 0)
- Amount on bank account = number of ones \rightarrow We always have enough "money" to pay!

universität freiburg

Potential Function Method

- Most generic and elegant way to do amortized analysis!
	- But, also more abstract than the others…
- State of data structure / system: $S \in \mathcal{S}$ (state space) **Potential function** Φ **:** $S \to \mathbb{R}_{>0}$
- **Operation :**
	- t_i : actual cost of operation i
	- S_i : state after execution of operation *i* (S_0 : initial state)
	- $\Phi_i \coloneqq \Phi(S_i)$: potential after exec. of operation i
	- a_i : amortized cost of operation *i*:

$$
a_i \coloneqq t_i + \Phi_i - \Phi_{i-1}
$$

Potential Function Method

Operation :

actual cost: t_i amortized cost: $a_i = t_i + \Phi_i - \Phi_{i-1}$

$$
t_i = a_i + \Phi_{i-1} - \Phi_i
$$

Overall cost:

$$
T := \sum_{i=1}^{n} t_i = \left(\sum_{i=1}^{n} a_i\right) + \Phi_0 - \Phi_n \le \left(\sum_{i=1}^{n} a_i\right) + \Phi_0.
$$

$$
\sum_{i=1}^{n} t_i = a_1 + \Phi_0 - \Phi_1
$$

$$
+ a_2 + \Phi_1 - \Phi_2
$$

$$
+ a_3 + \Phi_2 - \Phi_3
$$

$$
+ a_4 + \Phi_3 \cdots
$$

$$
\vdots
$$

$$
+ a_{n-1} + a_n + \Phi_{n-1} - \Phi_n
$$

universitätfreiburg

Fabian Kuhn – Algorithm Theory 11

Binary Counter: Potential Method

• **Potential function:**

Φ **: number of ones in current counter**

- Clearly, $\Phi_0 = 0$ and $\Phi_i \geq 0$ for all $i \geq 0$
- Actual cost t_i :
	- 1 flip from 0 to 1
	- $t_i 1$ flips from 1 to 0
- Potential difference: $\Phi_i \Phi_{i-1} = 1 (t_i 1) = 2 t_i$
- Amortized cost: $a_i = t_i + \Phi_i \Phi_{i-1} = 2$

Example 3: Dynamic Array

- How to create an array where the size dynamically adapts to the number of elements stored?
	- e.g., Java "ArrayList" or Python "list"

Implementation:

- Initialize with initial size N_0
- Assumptions: Array can only grow by appending new elements at the end
- If array is full, the size of the array is increased by a factor $\beta > 1$

Operations (array of size):

- read / write: actual cost $O(1)$
- append: actual cost is $O(1)$ if array is not full, otherwise the append cost is $O(\beta \cdot N)$ (new array size)

Example 3: Dynamic Array

Notation:

- $n:$ number of elements stored
- N : current size of array

Cost
$$
t_i
$$
 of i^{th} append operation: $t_i = \begin{cases} 1 & \text{if } n < N \\ \beta \cdot N & \text{if } n = N \end{cases}$

Claim: Amortized append cost is $O(1)$

Potential function ?

- should allow to pay expensive append operations by cheap ones
- when array is full, Φ has to be large
- immediately after increasing the size of the array, Φ should be small again

Dynamic Array: Potential Function

Cost
$$
t_i
$$
 of i^{th} append operation: $t_i =\begin{cases} 1 & \text{if } n < N \\ \beta \cdot N & \text{if } n = N \end{cases}$

\n**Mathestart:**

\n $\phi \text{ small } (\Phi = 0)$

\n $N = N_0$

\n $N = N_0$

\n $N = 0$

\n**W** $n = 0$

Let's try: $\Phi(n, N) = c \cdot (\beta n - N) + c \cdot N_0$

$$
c(\beta N - N) \ge \beta N
$$

$$
c(\beta - 1) \ge \beta
$$

$$
c \ge \frac{\beta}{\beta - 1}
$$

$$
\frac{\beta}{\beta-1} \qquad \Phi(n,N) = \frac{\beta}{\beta-1} \cdot (\beta n - N + N_0)
$$

universitätfreiburg

Dynamic Array: Amortized Cost

Cost t_i **of** i^{th} **append operation:** $t_i = \begin{cases} 1 & \text{if } n < N \\ R & N \end{cases}$ $\beta \cdot N$ if $n = N$

Potential function:

$$
\Phi(n,N) = \frac{\beta}{\beta-1} \cdot (\beta n - N + N_0)
$$

Amortized cost $a_i = t_i + \Phi_i - \Phi_{i-1}$

Case 1
$$
(n < N)
$$
: $a_i = 1 + \frac{\beta}{\beta - 1} \cdot (\beta(n + 1) - \beta n) = 1 + \frac{\beta^2}{\beta - 1}$

Case 2 ($n = N$ **):** $t_i = \beta n = \beta N$

$$
a_{i} = \beta N + \frac{\beta}{\beta - 1} \cdot [\beta(N + 1) - \beta N - (\beta N - N)]
$$

= $\beta N + \frac{\beta^{2}}{\beta - 1} - \frac{\beta}{\beta - 1} \cdot (\beta - 1)N = \frac{\beta^{2}}{\beta - 1}$

Amortized cost $\leq 1 + \frac{\beta^2}{\beta}$ β -1

universitätfreiburg