

Algorithm Theory

Chapter 5 Data Structures

Fibonacci Heaps

Fabian Kuhn

Priority Queue / Heap

- Stores (key,data) pairs
 - like a dictionary, but with a different set of operations
- Initialize-Heap: creates new empty heap
- Is-Empty: returns true if heap is empty
- Insert(key,data): inserts (key,data)-pair, returns pointer to entry
- Get-Min: returns (key,data)-pair with minimum key
- **Delete-Min**: deletes (and returns) minimum (*key,data*)-pair
 - has to be consistent with get-min operation
- Decrease-Key(entry,newkey): decreases key of entry to newkey
- Merge: merges two heaps into one

Implementation of Dijkstra's Algorithm

Dijkstra's Algorithm:

- 1. Initialize d(s,s) = 0 and $d(s,v) = \infty$ for all $v \neq s$
- 2. All nodes $v \neq s$ are unmarked

```
create empty priority queue Q, add all nodes to Q with initial key d(s,v) imates d(s,v)
```

- 3. Get unmarked node u which minimizes d(s, u):
- 4. mark node u

```
u \coloneqq Q.\mathsf{delete\_min()} vith minimum d(s, u), delete u from DS unmarked v
```

5. For all $e = \{u, v\} \in E$, $d(s, v) = \min\{d(s, v), d(s, u) + w(e)\}$ For all unmarked neighbors v of u: potentially call Q.decrease_key

Until all nodes are marked

until Q is empty

Implementation of Prim/Jarník Algorithm

Start at node s, very similar to Dijkstra's algorithm:

- 1. Initialize d(s) = 0 and $d(v) = \infty$ for all $v \neq s$
- 2. All nodes $v \neq s$ are unmarked

```
create empty priority queue Q, add all nodes to Q with initial key d(v)
```

- 3. Get unmarked node u which minimizes d(u):
- 4. mark node u

$$u \coloneqq Q.\mathsf{delete_min()}$$

unmarked v

5. For all $e = \{u, v\} \in E$, $d(v) = \min\{d(v), w(e)\}$

For all unmarked neighbors v of u: potentially call Q.decrease_key

Until all nodes are marked

until Q is empty

Analysis

Number of priority queue operations for Dijkstra:

Initialize-Heap: 1

Is-Empty: n

• Insert:

• Get-Min: 0

• Delete-Min:

• Decrease-Key: $\leq m$

• Merge: **0**

Assumption:

 $\underline{n} = |V|$ (number of nodes) $\underline{m} = |E|$ (number of edges)

• $m \ge n-1$

#Decrease-Key:

Always for an unmarked neighbor v of a newly marked node u

 $\Rightarrow \leq 1$ decrease-key per edge

Can We Do Better?

• Cost of **Dijkstra** with **complete binary min-heap** implementation:

$$O(m \cdot \log n)$$

- Binary heap: insert, delete-min, and decrease-key cost $O(\log n)$
- One of the operations insert or delete-min must cost $\Omega(\log n)$:
 - $\underbrace{\text{Heap-Sort}}_{n}$: Insert n elements into heap, then take out the minimum n times
 - (Comparison-based) sorting costs at least $\Omega(n \log n)$.
- But maybe we can improve decrease-key and one of the other two operations?

Fibonacci Heaps

Structure:

A Fibonacci heap H consists of a collection of trees satisfying the min-heap property.

Min-Heap Property:

Key of a node $v \le \text{keys}$ of all nodes in any sub-tree of v

Fibonacci Heaps

Structure:

A Fibonacci heap H consists of a collection of trees satisfying the min-heap property.

Variables:

- *H. min*: root of the tree containing the (a) minimum key
- *H.rootlist*: circular, doubly linked, unordered list containing the roots of all trees
- H. <u>size</u>: number of nodes currently in H

Lazy Merging:

- To reduce the number of trees, sometimes, trees need to be merged
- Lazy merging: Do not merge as long as possible...

Trees in Fibonacci Heaps

- v.child: points to circular, doubly linked and unordered list of the children of v
- v.left, v.right: pointers to siblings (in doubly linked list)
- v.mark: will be used later...

Advantages of circular, doubly linked lists:

- Deleting an element takes constant time
- Concatenating two lists takes constant time

Example

Simple (Lazy) Operations

Initialize-Heap *H*:

• H.rootlist := H.min := null

Merge heaps H and H':

- concatenate root lists
- update H. min

Insert element *e* into *H*:

- create new one-node tree containing $e \rightarrow H'$
 - mark of root node is set to false
- merge heaps H and H'

Get minimum element of *H*:

return H. min

Operation Delete-Min

Delete the node with minimum key from H and return its element:

H.min

- 1. $\underline{m} \coloneqq \underline{H}.\underline{min}$;
- 2. if H.size > 0 then
- 3. remove *H.min* from *H.rootlist*;
- 4. add *H.min.child* (list) to *H.rootlist*
- 5. H.Consolidate();

```
// Repeatedly merge nodes with equal degree in the root list // until degrees of nodes in the root list are distinct. // Determine the element with minimum key
```

6. **return** m

Rank and Maximum Degree

Ranks of nodes, trees, heap:

Node v:

• rank(v): number of children of v (degree of v)

Tree T:

• rank(T): rank (degree) of root node of T

Heap H:

• rank(H): maximum degree (#children) of any node in H

Assumption (n: number of nodes in H):

$$rank(H) \leq \underline{D(n)}$$

- for a known function D(n)

Merging Two Trees

14

Given: Heap-ordered trees T, T' with rank(T) = rank(T')

• Assume: min-key of $T \leq \min$ -key of T'

Operation link(T, T'):

• Removes tree T' from root list and adds T' to child list of T

- rank(T) := rank(T) + 1
- (T'.mark = false)

Consolidation of Root List

Time:

Array A pointing to find roots with the same rank:

Consolidate:

- 1. for i := 0 to D(n) do A[i] := null
- 2. while $H.rootlist \neq \text{null do}$
- 3. T := "delete and return first element of H.rootlist"
- 4. while $A[rank(T)] \neq \text{null do}_{\triangle}$
- 5. $T' \coloneqq A[rank(T)]$
- 6. A[rank(T)] := null
- 7. $\underline{T} \coloneqq link(T, T')$
- 8. A[rank(T)] := T
- 9. Create new *H*. rootlist and *H*. min

O(|H.rootlist|+D(n))

Operation Decrease-Key

Decrease-Key(v, x): (decrease key of node v to new value x)

- 1. if $x \ge v$. key then return
- 2. v.key := x;
- 3. update H.min to point to v if necessary
- 4. **if** $v \in H.rootlist \lor x \ge v.parent.key$ **then return**
- 5. repeat
- 6. parent = v.parent
- 7. H.cut(v)
- 8. v = parent
- 9. $until \neg (v.mark) \lor v \in H.rootlist$
- 10. if $v \notin H.rootlist$ then v.mark := true

Operation Cut(v)

Operation H.cut(v):

- Cuts v's sub-tree from its parent and adds v to rootlist
- 1. if $v \notin H$. rootlist then
- 2. // cut the link between v and its parent
- 3. rank(v.parent) = rank(v.parent) 1;
- 4. remove v from v. parent. child (list)
- 5. v.parent = null;
- 6. add v to H.rootlist; v.mark := false;

Algorithm Theory Fabian Kuhn 23

Decrease-Key Example

Green nodes are marked

Fibonacci Heaps Marks

- Nodes in the root list (the tree roots) are always unmarked
 - → If a node is added to the root list (insert, decrease-key), the mark of the node is set to false.
- Nodes not in the root list can only get marked when a subtree is cut in a decrease-key operation
- A node v is marked if and only if v is not in the root list and v has lost a child since v was attached to its current parent
 - a node can only change its parent by being moved to the root list

Fibonacci Heap Marks

History of a node v:

v is being linked to a node

v.mark = false

a child of v is cut

v.mark := true

a second child of v is cut

H.cut(v); v.mark := false

- Hence, the boolean value v.mark indicates whether node v has lost a child since the last time v was made the child of another node.
- Nodes v in the root list always have v. mark = false

Cost of Delete-Min & Decrease-Key

Delete-Min:

- 1. Delete min. root r and add r. child to H. rootlist time: O(1)
- 2. Consolidate H.rootlisttime: O(length of <math>H.rootlist + D(n))
- Step 2 can potentially be linear in n (size of H)

Decrease-Key (at node v):

- 1. If new key < parent key, cut sub-tree of node v time: O(1)
- Cascading cuts up the tree as long as nodes are marked time: O(number of consecutive marked nodes)
- Step 2 can potentially be linear in n

Remark: Both operations can take $\Theta(n)$ time in the worst case!

Cost of Delete-Min & Decrease-Key

- Cost of delete-min and decrease-key can be $\Theta(n)$...
 - Seems a large price to pay to get insert in O(1) time
- Maybe, the operations are efficient most of the time?
 - It seems to require a lot of operations to get a long rootlist and thus,
 an expensive consolidate operation
 - In each decrease-key operation, at most one node gets marked:
 We need a lot of decrease-key operations to get an expensive decrease-key operation
- Can we show that the average cost per operation is small?
 - ⇒ requires **amortized analysis**

Amortized Cost of Fibonacci Heaps

- Initialize-heap, is-empty, get-min, insert, and merge have worst-case and amortized cost O(1)
- Delete-min has amortized cost $O(\log n)$
- Decrease-key has amortized cost O(1)
- Starting with an empty heap, any sequence of \underline{n} operations with at most n_d delete-min operations has total cost (time)

$$T = O(n + n_d \log n). \frac{\text{District}}{\text{O}(m + n \log n)}$$

- We will now need the marks...
- Cost for Dijkstra & Prim/Jarník: $O(m + n \log n)$

Fibonacci Heaps: Marks

Cycle of a node:

1. Node v is removed from root list and linked to a node

v.mark = false

2. Child node u of v is cut and added to root list

v.mark := true

3. Second child of v is cut

node v is cut as well and moved to root list v.mark := false

The boolean value v. mark indicates whether node v has lost a child since the last time v was made the child of another node.

Potential Function

System state characterized by two parameters:

- R: number of trees (length of H. rootlist)
- M: number of marked nodes (not in the root list)

Potential function:

$$\Phi \coloneqq \frac{l}{R} + \frac{2M}{2M}$$

Example:

•
$$R = 7, M = 2 \rightarrow \Phi = 11$$

Actual Time of Operations

• Operations: *initialize-heap, is-empty, insert, get-min, merge*

```
actual time: O(1)
```

Normalize unit time such that

$$t_{init}, t_{is-empty}, t_{insert}, t_{get-min}, t_{merge} \leq 1$$

- Operation delete-min:
 - Actual time: O(length of H.rootlist + D(n))
 - Normalize unit time such that

$$t_{del-min} \le D(n) + \text{length of } H.rootlist$$

- Operation descrease-key:
 - Actual time: O(length of path to next unmarked ancestor)
 - Normalize unit time such that

$$t_{decr-kev} \leq \text{length of path to next unmarked ancestor}$$

Amortized Times

Assume operation i is of type:

• initialize-heap:

- actual time: $t_i \leq 1$, potential: $\Phi_{i-1} = \Phi_i = 0$
- amortized time: $a_i = t_i + \Phi_i \Phi_{i-1} \le 1$

is-empty, get-min:

- actual time: $t_i \leq 1$, potential: $\Phi_i = \Phi_{i-1}$ (heap doesn't change)
- amortized time: $a_i = t_i + \Phi_i \Phi_{i-1} \le 1$

merge:

- − Actual time: $t_i \le 1$
- combined potential of both heaps: $\Phi_i = \Phi_{i-1}$
- amortized time: $a_i = t_i + \Phi_i \Phi_{i-1} \leq 1$

Amortized Time of Insert

Assume that operation i is an *insert* operation:

- Actual time: $t_i \leq 1$
- Potential function:
 - M remains unchanged (no nodes are marked or unmarked, no marked nodes are moved to the root list)
 - R grows by 1 (one element is added to the root list)

$$\underbrace{\frac{M_{i} = M_{i-1}}{\Phi_{i} = \Phi_{i-1}}, \quad \underbrace{R_{i} = R_{i-1} + 1}_{P_{i-1}}$$

Amortized time:

$$\underline{a}_i = \underline{t}_i + \underline{\Phi}_i - \underline{\Phi}_{i-1} \leq 2$$

Amortized Time of Delete-Min

Assume that operation i is a *delete-min* operation:

Actual time:
$$t_i \leq \underline{D(n)} + |H.rootlist|$$

Potential function $\Phi = R + 2M$:

- \underline{R} : changes from |H.rootlist| to at most $\underline{D(n)} + 1$
- M: (# of marked nodes that are not in the root list)
 - Number of marks does not increase

$$\underbrace{M_{i} = M_{i-1}}_{\Phi_{i}}, \quad R_{i} \leq R_{i-1} + D(n) + 1 - |H.rootlist|}_{\Phi_{i} \leq \Phi_{i-1}} + D(n) + 1 - |H.rootlist|}_{\Phi_{i} = R_{i} + 2M_{i} \leq R_{i-1} + 2M_{i-1}} + D(n) + 1 - |H.rootlist|}$$
Amortized Time:
$$a_{i} = t_{i} + \Phi_{i} - \Phi_{i-1} \leq 2D(n) + 1$$

$$D(n) + |H|_{sL} + D(n) + -|H|_{sM}$$

Amortized Time of Decrease-Key

Assume that operation i is a decrease-key operation at node u:

Actual time: $t_i \leq \text{length of path to next unmarked ancestor } v$

Potential function $\Phi = R + 2M$:

$$\phi_i - \phi_{i+1} \le k+1 + 2(-(k-1)) = -k+3$$

- Assume, node u and nodes u_1, \dots, u_k are moved to root list
 - $-u_1, ..., u_k$ are marked and moved to root list, v. mark is set to true

marks	root list	
Removed marks:	Added to root list:	
u_1, \dots, u_k	u, u_1, \dots, u_k	
(and u , if u is marked)	$D D - k \perp 1$	
Added mark: v	$R_{i}-R_{i-1}=k+1$	
$\underline{M}_i - \underline{M}_{i-1} \leq \underline{-(k-1)}$		

Amortized Time of Decrease-Key

Assume that operation i is a decrease-key operation at node u:

Actual time: $t_i \leq \text{length of path to next unmarked ancestor } v$

Potential function $\Phi = R + 2M$:

- Assume, node u and nodes u_1, \dots, u_k are moved to root list
 - $-u_1, \dots, u_k$ are marked and moved to root list, v. mark is set to true
- $\geq k$ marked nodes go to root list, ≤ 1 node gets newly marked
- R grows by $\leq k+1$, M grows by 1 and is decreased by $\geq k$

$$R_i \le R_{i-1} + k + 1, \qquad M_i \le M_{i-1} + 1 - k$$

 $\Phi_i \le \Phi_{i-1} + (k+1) - 2(k-1) = \Phi_{i-1} + 3 - k$

Amortized time:

$$a_i = t_i + \Phi_i - \Phi_{i-1} \le k+1+3-k = 4$$

Complexities Fibonacci Heap

Initialize-Heap: 0(1)

• Is-Empty: O(1)

• Insert: **0**(1)

• Get-Min: O(1)

• Delete-Min: O(D(n)) \longrightarrow amortized

• Decrease-Key: O(1)

• Merge (heaps of size m and $n, m \le n$): O(1)

• How large can D(n) get?

Rank of Children

Lemma:

Consider a node v of rank k and let $\underline{u_1, ..., u_k}$ be the children of v in the order in which they were linked to v. Then,

$$\underbrace{rank(u_i) \geq i-2}_{}.$$

Proof:

When u_i is added, v already has children u_1, \dots, u_{i-1} :

 $\Rightarrow \underbrace{rank(u_i) \ge i - 1 \text{ when}}_{u_i \text{ is linked to } v.}$

Each node can lose at most one child:

 $\Rightarrow rank(u_i) \ge i - 2$ as long as u_i is linked to v.

Fibonacci Numbers:

$$F_0 = 0$$
, $F_1 = 1$, $\forall k \ge 2$: $F_k = F_{k-2} + F_{k-1}$

Lemma:

In a Fibonacci heap, the size of the sub-tree of a node v with rank \underline{k} is at least F_{k+2} .

Proof:

• S_k : minimum size of the <u>sub-tree of a node of rank k</u>

$$S_0 = 1$$
, $S_1 = 2$, $\forall k \ge 2 : S_k \ge 2 + \sum_{i=0}^{k-2} S_i$

Claim about Fibonacci numbers:

$$\forall \underline{k \geq 0} : F_{k+2} = 1 + \sum_{i=0}^{k} F_i$$
 $(F_0 = 0, F_1 = 1)$

Proof of claim (by induction on k):

• Base case
$$(k = 0)$$
: $F_2 = 1 + \sum_{i=0}^{\infty} F_i = 1 + F_0 = 1$

• Induction step (k > 0):

$$F_{k+2} = F_k + F_{k+1}$$

I.H.: $F_{k+1} = 1 + \sum_{i=0}^{k-1} F_i$

numbers

$$S_0 = 1, S_1 = 2, \forall k \ge 2 : S_k \ge 2 + \sum_{i=0}^{k-2} S_i, \qquad F_{k+2} = 1 + \sum_{i=0}^{k} F_i$$

Claim of lemma: $S_k \ge F_{k+2}$

Proof by induction on k:

- Base case (k = 0, k = 1): $S_0 \ge F_2 = 1$ $S_1 \ge F_3 = 2$
- Induction step (k > 1):

$$S_k \ge 2 + \sum_{i=0}^{k-2} S_i \ge 2 + \sum_{i=0}^{k-2} F_{i+2} = 2 + \sum_{j=2}^{k} F_j = 1 + \sum_{j=0}^{k} F_j = F_{k+2}$$

I.H. $j = i+2$ previous claim on Fibonacci

Algorithm Theory Fabian Kuhn 42

Lemma:

In a Fibonacci heap, the size of the sub-tree of a node v with rank k is at least F_{k+2} .

Theorem:

The maximum rank of a node in a Fibonacci heap of size n is at most

$$D(n) = O(\log n)$$

Proof:

The Fibonacci numbers grow exponentially:

$$F_k = \frac{1}{\sqrt{5}} \cdot \left(\left(\frac{1 + \sqrt{5}}{2} \right)^k - \left(\frac{1 - \sqrt{5}}{2} \right)^k \right)$$

• For $D(n) \ge k$, we need $n \ge F_{k+2}$ nodes.

Binary Heaps & Fibonacci Heaps

	Binary Heap	Fibonacci Heap
initialize	O (1)	O (1)
insert	$O(\log n)$	0(1)
get-min	0 (1)	O (1)
delete-min	$O(\log n)$	$O(\log n) * $
decrease-key	$O(\log n)$	0(1) *
is-empty	0(1)	O (1)

^{*} amortized time