Algorithm Theory

Chapter 5
Data Structures

Fibonacci Heaps
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Priority Queue / Heap
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» Stores (key,data) pairs
— like a dictionary, but with a different set of operations

* Initialize-Heap: creates new empty heap

* Is-Empty: returns true if heap is empty

* Insert(key,data): inserts (key,data)-pair, returns pointer to entry
* Get-Min: returns (key,data)-pair with minimum key

* Delete-Min: deletes (and returns) minimum (key,data)-pair

— has to be consistent with get-min operation
* Decrease-Key(entry,newkey): decreases key of entry to newkey
 Merge: merges two heaps into one
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Implementation of Dijkstra’s Algorithm
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Dijkstra’s Algorithm:

Initialize d(s,s) = 0and d(s,v) = o forallv # s
2. All nodes v # s are unmarked

create empty priority queue 0, 1 nodes,
add all nodes to Q with initial key d(s,v) |mates d(s,v)

3. Get unmarked node u which minimizes d(s, u):
4, mark node u

u := Q.delete_min() vith minimum d(s, u),
delete u from DS

unmarked v
5. Foralle = {u,v} € E, d(s,v) = min{d(s,v),d(s,u) + w(e)}

For all unmarked neighbors v of u: potentially call Q.decrease_key

6. Until all nodes are marked

ﬁ until Q is empty
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Implementation of Prim/Jarnik Algorithm
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Start at node s, very similar to Dijkstra’s algorithm :

1. Initialize d(s) = 0andd(v) = o forallv # s
2. All nodes v # s are unmarked

create empty priority queue 0,
add all nodes to Q with initial key d(v)

3. Get unmarked node u which minimizes d(u):

4, mark node u

u == (.delete_min()

unmarked v /
5. Foralle = {u,v} € E, d(v) = min{d(v),w(e)}

For all unmarked neighbors v of u: potentially call Q.decrease key

6. Until all nodes are marked

ﬁ until Q is empty
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Analysis

Number of priority queue operations for Dijkstra: |

Initialize-Heap: 1

Is-Empty: n
Insert: @
Get-Min: 0

Delete-Min: @
Decrease-Key: @

Merge:

Algorithm Theory
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Assumpt}p’n:/'
n = |V| (humber of nodes)
= |E| (number of edges)

*m=2n—1

#Decrease-Key:

Always for an unmarked neighbor v
of a newly marked node u

— < 1 decrease-key per edge
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Can We Do Better?
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* Cost of Dijkstra with complete binary min-heap implementation:

Q(n - logn)

e Binary heap:
insert, delete-min, and decrease-key cost O (logn)

* One of the operations insert or delete-min must cost (2(logn):

— Heap-Sort:
\ . . . .
Insert n elements into heap, then take out the minimum n times

— (Comparison-based) sorting costs at least  (nlogn).

* But maybe we can improve decrease-key and one of the other
two operations?
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Fibonacci Heaps
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A\
A Fibonacci heap H consists of a collection of trees satisfying the
min-heap property.

Structure:

Min-Heap Property:

Key of a node v < keys of all nodes in any sub-tree of v
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Fibonacci Heaps
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Structure:

A Fibonacci heap H consists of a collection of trees satisfying the
min-heap property.

Variables:
* H.min: root of the tree containing the (a) minimum key

 H.rootlist: circular, doubly linked, unordered list containing
the roots of all trees

* H.size: number of nodes currently in H

—_—

Lazy Merging:

 To reduce the number of trees, sometimes, trees need to be
merged

* Lazy merging: Do not merge as long as possible...
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Trees in Fibonacci Heaps
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Structure of a single node v: /‘
= > S >
= k__y rank =
child, | mark
/

* v.child: points to circular, doubly linked and unordered list of
the children of v

* v.left, v.right: pointers to siblings (in doubly linked list)

o v.mark: will be used later...
VIT DE Used et

Advantages of circular, doubly linked lists:
e Deleting an element takes constant time
* Concatenating two lists takes constant time
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Example
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[

p Figure: Cormen et al., Introduction to Algorithms
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Simple (Lazy) Operations
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Initialize-Heap H.:
e H.rootlist := H.min = null

T

Merge heaps H and H':
e concatenate root lists
 update H.min

Insert element e into H:

* create new one-node tree containing e 2> H’
— mark of root node is set to false

* merge heaps\H and H'

Get minimum element of H:
e return H.min
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Operation Delete-Min
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Delete the node with minimum key from H and return its element:
H.min

O—0 1@ :
m = H.min; A_ =y \\m

if H.size > 0 then
remove H. min from H.rootlist;
add H.min. child (list) to H.rootlist
H.Consolidate();

—~

// Repeatedly merge nodes with equal degree in the root list
// until degrees of nodes in the root list are distinct.
// Determine the element with minimum key

A S

6. returnm
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Rank and Maximum Degree
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Ranks of nodes, trees, heap:

Node v:
* rank(v): number of children of v (degree of v)

Tree T
 rank(T): rank (degree) of root node of T

Heap H:
* rank(H): maximum degree (#children) of any node in H

Assumption (n: number of nodes in H):
rank(H) < D(n)

—

— for a known function D (n)

_—
——
—
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Merging Two Trees
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Given: Heap-ordered trees T, T’ with rank(T) = rank(T")

—
* Assume: min-key of T < min-key of T’
ey oL

Operation link(T,T'): link
T /

e Removes tree T' from root list

and adds T’ to child list of T @K@ ..................................

e rank(T) :=rank(T) + 1
 (T'.mark = false)
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Consolidate Example

link

----- —® g@@

-
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Consolidate Example

link
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Consolidate Example
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Consolidate Example

link
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Consolidate Example
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Consolidate Example
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Consolidation of Root List Tl,?‘l —
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Array A pointing to find roots with the same rank:

012 D)
Consolidate: -
. 1= null Time:
fori := 0to D(n) do Ali] := nu O(|H. rootlist|+D(n))
: iwhile H.rootlist # null do — S—

1
2
3 T := “delete and return first element of H.rootlist”
4. ‘while A[rank(T)] # null do li

’ o ? N\'C'kL [ENUN
5. T' == Alrank(T)] !

{O(\)

6
7
8
9

—

|
Alrank(T)] = null I],
T = link(T,T") ¥ J,l ]/ (i)
l
|

_—

Alrank(T)] =T | e
. Create new H.rootlist and H.min

g“éc‘\ )

. \ .
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Operation Decrease-Key
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Decrease-Key(v, x): (decrease key of node v to new value x)
\2

1. if x = v.key then return 74\0/
2. v.key = x; 6,0

3. update H.min to point to v if necessary /é \\

4. ifv € H.rootlist V x = v.parent. key then return

5. repeat e

6. parent := v.parent Cew mar 'ﬁ

7. H.cut(v) cut

8. vV = parent cut

9. until =(v.mark) V v € H.rootlist eyy > x

10. if v € H.rootlist then v. mark = true cut
— v: new key x
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Operation Cut(v)
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Operation H. cut(v):
e Cuts v’s sub-tree from its parent and adds v to rootlist

if v & H.rootlist then
// cut the link between v and its parent
rank(v.parent) = rank(v.parent) — 1;

remove v from v.parent. child (list)

v.parent := null;

A A T o o

add v to H.rootlist; v.mark := false;
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Decrease-Key Example
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e Green nodes are marked
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Fibonacci Heaps Marks
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 Nodes in the root list (the tree roots) are always unmarked
— If a node is added to the root list (insert, decrease-key), the
mark of the node is set to false.

 Nodes not in the root list can only get marked when a subtree
is cut in a decrease-key operation

* Anode vis marked if and only if v is not in the root list and v
has lost a child since v was attached to its current parent

— a node can only change its parent by being moved to the root list
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Fibonacci Heap Marks

|
FRE:BURG

UNI

History of a node v:

v is being linked to a node v.mark = false
a child of v is cut v.mark := true
a second child of v is cut H.cut(v);

v.mark = false

 Hence, the boolean value v. mark indicates whether node v has
lost a child since the last time v was made the child of another
node.

 Nodes v in the root list always have v.mark = false
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Cost of Delete-Min & Decrease-Key
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Delete-Min:

1. Delete min. root r and add r. child to H.rootlist
time: 0(1)

2. Consolidate H.rootlist
time: O(length of H.rootlist + D(n))

e Step 2 can potentially be linear in n (size of H)

Decrease-Key (at node v):

1. If new key < parent key, cut sub-tree of node v
time: 0(1)

2. Cascading cuts up the tree as long as nodes are marked
time: O (number of consecutive marked nodes)

e Step 2 can potentially be linearin n

Remark: Both operations can take ®(n) time in the worst case!

Algorithm Theory Fabian Kuhn
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Cost of Delete-Min & Decrease-Key
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* Cost of delete-min and decrease-key can be O(n)...

— Seems a large price to pay to get insertin O(1) time

 Maybe, the operations are efficient most of the time?

— |t seems to require a lot of operations to get a long rootlist and thus,
an expensive consolidate operation

— In each decrease-key operation, at most one node gets marked:
We need a lot of decrease-key operations to get an expensive
decrease-key operation

* Can we show that the average cost per operation is small?

= requires amortized analysis

Algorithm Theory Fabian Kuhn
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Amortized Cost of Fibonacci Heaps

* [|nitialize-heap, is-empty, get-min, insert, and merge
have worst-case and amortized cost O(1)

* Delete-min has amortized cost O(logn)
* Decrease-key has amortized cost O(1)

e Starting with an empty heap, any sequence of n operations

with at most n; delete-min operations has total cost (time)

Dt ska L
T =0n+nyzlogn). -)_(;(m X “‘°§“\

e We will now need the marks...

* Cost for Dijkstra & Prim/Jarnik: O(m + nlogn)
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Fibonacci Heaps: Marks
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Cycle of a node:

1. Node v is removed from root list and linked to a node
v.mark = false

2. Child node u of v is cut and added to root list
v.mark := true

3. Second child of v is cut

node v is cut as well and moved to root list
v.mark = false

The boolean value v. mark indicates whether node v has lost a
child since the last time v was made the child of another node.
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Potential Function
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System state characterized by two parameters:
* R:number of trees (length of H.rootlist)

—

* M: number of marked nodes (not in the root list)

Potential function:

[
® =R+ 2M

Example:

|

(NS
\Z
)
|

p—
p—

e R=7,M
—_—— \
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Actual Time of Operations
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* Operations: initialize-heap, is-empty, insert, get-min, merge

actual time: 0(1) o

— Normalize unit time such that

Linit) tis—empty: Linserts tget—miru tmerge =

—
—

* Operation delete-min:
— Actual time: 0(@gth of H.rootlist + D(n))

— Normalize unit time such that
tael—min < D(n) + length of H.rootlist

* Operation descrease-key:
— Actual time: O(length of path to next unmarked ancestor)

— Normalize unit time such that

taecr—key < length of path to next unmarked ancestor

Algorithm Theory Fabian Kuhn
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Amortized Times
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Assume operation i is of type:

* initialize-heap:
— actualtime: t; < 1, potential: ®;_; = ®; =0
— amortized time: a; = t; + ¢; —P;_1 <1

* is-empty, get-min:
— actual time: t; < 1, potential: ®; = ®;_; (heap doesn’t change)
— amortized time: a; = t; + ¢; —P;_; <1

°* merge:
— Actual time: t; <1
— combined potential of both heaps: ®; = ;4
— amortized time: q; = t; + ®; —P;_; <1

Algorithm Theory Fabian Kuhn
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Amortized Time of Insert
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Assume that operation i is an insert operation:

 Actualtime:¢; <1

e ——

 Potential function:

— M remains unchanged (no nodes are marked or unmarked, no marked
nodes are moved to the root list)

— R grows by 1 (one element is added to the root list)

Mi — Mi—l) Ri\zRi—l +1
(,Di\: CI)i—l +1 -

e Amortized time:

ai=t,-+<I>,-—<Di_1S2

= —_—
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Amortized Time of Delete-Min
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Assume that operation i is a delete-min operation:

K\R

Actual time: ¢; < D(n) + |H.rootlist]|

Potential function ® = R + 2M:
* R:changes from |H.rootlist| to at most D(n)+1

* M: (# of marked nodes that are not in the root list)

— Number of marks does not increase

M; = M;_4, Ri <Ri_1+D() +1—|H.rootlist]|

b, <P, + D(n) + 1 — |H.rootlist]|

—_— — ,— — —

‘b’ = QaM; ¢ Q;_“"z“... FDWN+H - [H.atbsH

Amortized Time:

a;, = ti+q;i_q)i—1 < ZD(n) + 1

Algorithm Theory

7
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Amortized Time of Decrease-Key
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Assume that operation i is a decrease-key operation at node u:

Actual time: ¢; < length of path to next unmarked ancestor v

Potential function ® = R + 2M: (bi - O, RN R A CTDERE

* Assume, node u and nodes uq, ..., U, are moved to root list

— U4, ..., U are marked and moved to root list, v. mark is set to true

/' new mark marks root list

/ Uk Removed marks: Added to root list:
,ukx Uq, ..., U u,uq,..,U
ety 1 k 1 k

mark removed (and u, if u is marked)

/ Ri — Ri—l = k + 1
! Added mark: v

M;—M;_{ <—(k—1)

S
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Amortized Time of Decrease-Key

UNI
FREIBURG

Assume that operation i is a decrease-key operation at node u:
Actual time: ¢; < length of path to next unmarked ancestor v

Potential function ® = R 4+ 2M:
* Assume, node u and nodes uq, ..., U, are moved to root list

— U4, ..., U are marked and moved to root list, v. mark is set to true

> k marked nodes go to root list, < 1 node gets newly marked
* Rgrowsby<k+ 1, M grows by 1 and is decreased by = k

RiSRi_1+k+1, Ml'SMl'_1+1_k

————

O, <P+ (k+1D)—2(k-1) =D, +3—k

Amortized time:
ai:ti‘l‘q)i—q)i_lgk‘l‘l‘l‘g—k:‘l-

—
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Complexities Fibonacci Heap
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* Initialize-Heap: 0(1)

* Is-Empty: 0(1)
* Insert: 0(1)
* Get-Min: 0(1)

* Delete-Min:  0(D(n)) .
(> amortized

* Decrease-Key: 0(1)

* Merge (heaps of sizemandn, m < n): 0(1)

* How large can D(n) get?
—

Algorithm Theory Fabian Kuhn
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Rank of Children
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Lemma:

Consider a node v of rank k and let u4, ..., u; be the children of v in
the order in which they were linked to v. Then,

rank(u;) > i— 2.

Proof:
When u; is added, v already Each node can lose
has children Uq, oo, Uj_1: at most one child:

= rank(u;) =i — 1 when = rank(u;) =i — 2 as long
u; is linked to v. as u; is linked to v.
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Size of Trees
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Fibonacci Numbers:
F, =0, F, =

——

Lemma:

In a Fibonacci heap, the size of the sub-tree of a node v with

rank k is at least Fj, .

Proof:

1,

Vk > Z:Fk - Fk—Z + Fk—l

N

N —
Sk‘a _“241

* Sk:minimum size of the sub-tree of a node of rank k

Algorithm Theory
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Size of Trees
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k-2

So =1, S =2, Vk22:5k22+zi
i=0
Claim about Fibonacci numbers:
k
VkZO:Fk+2=1+ZFi (F():O,F]_:l)
——1=0_
Proof of claim (by induction on k): 0
 Base case (k = 0): F2=1+2Fi=1+F0=1
i=0

* Induction step (k > 0):

Fiyz = Fie + Fieyq

o~

k-1
I.H.: Fk+1 — 1 + z Fl
e i=0
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Size of Trees _
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k-2 k
So=1,8, =2,Vk > 2:5, > 2+25i, Fipy = 1+2Fi

Claim of lemma: S, = Fj. .,

E—

Proof by induction on k:
* Basecase(k=0,k=1): So=F,=1 S =2F;=2

* Induction step (k > 1):

k-2 k-2
SE24Y 5324 24 I+ F <R
i=0 i= j=2 j=0
I.H. j=1i+2 Fo=0,F; =1|| previous claim
on Fibonacci
numbers
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Size of Trees
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Lemma:
In a Fibonacci heap, the size of the sub-tree of a node v with rank k
is at least Fy, 5.

Theorem:
The maximum rank of a node in a Fibonacci heap of size n is at most

D(n) = O(logn).

Proof:
* The Fibonacci numbers grow exponentially:

1 (/1445 [1-v5)\"
w7 ()

T — . —

 ForD(n) = k, we needn = F;,, nodes.
R N
<~ '¥x
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Binary Heaps & Fibonacci Heaps
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initialize
insert
get-min
delete-min
decrease-key

is-empty

Algorithm Theory

Binary Heap

0(1)
O(logn)
0(1)
O(logn)
O(log n)
0(1)

Fabian Kuhn

Fibonacci Heap

0(1)
0o(1) =
0(1)

O(logn) * <
O(1)* <«—
0(1)

Xk . o
amortized time
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