

Algorithm Theory

Chapter 5 Data Structures

Fibonacci Heaps

Fabian Kuhn

Priority Queue / Heap

- Stores (*key,data*) pairs
	- like a dictionary, but with a different set of operations
- **Initialize-Heap:** creates new empty heap
- **Is-Empty**: returns true if heap is empty
- **Insert**(*key,data*): inserts (*key,data*)-pair, returns pointer to entry
- **Get-Min**: returns (*key,data*)-pair with minimum *key*
- **Delete-Min**: deletes (and returns) minimum (*key,data*)-pair
	- has to be consistent with get-min operation
- **Decrease-Key**(*entry,newkey*): decreases *key* of *entry* to *newkey*
- **Merge**: merges two heaps into one

Dijkstra's Algorithm:

- 1. Initialize $d(s, s) = 0$ and $d(s, v) = \infty$ for all $v \neq s$
- 2. All nodes $v \neq s$ are unmarked

create empty priority queue Q , denotes, add all nodes to Q with initial key $d(s, v)$ fimates $d(s, v)$

- 3. Get unmarked node u which minimizes $d(s, u)$:
- 4. mark node u

 $u \coloneqq Q.$ delete_min() \mid vith minimum $d(s,u)$, delete u from DS unmarked ν

- 5. For all $e = \{u, v\} \in E$, $d(s, v) = min\{d(s, v), d(s, u) + w(e)\}$ For all unmarked neighbors v of u : potentially call Q.decrease_key
- 6. Until all nodes are marked

until Q is empty

Algorithm Theory **Fabian Kuhn** 5 and 3 and

Implementation of Prim/Jarník Algorithm

Start at node , very similar to Dijkstra's algorithm :

- 1. Initialize $d(s) = 0$ and $d(v) = \infty$ for all $v \neq s$
- 2. All nodes $v \neq s$ are unmarked

create empty priority queue Q , add all nodes to Q with initial key $d(v)$

- 3. Get unmarked node u which minimizes $d(u)$:
- 4. mark node u

 $u = Q$.delete_min()

unmarked ν

5. For all $e = \{u, v\} \in E$, $d(v) = \min\{d(v), w(e)\}$

For all unmarked neighbors v of u : potentially call Q decrease_key

6. Until all nodes are marked

until Q is empty

Algorithm Theory **Algorithm Theory Fabian Kuhn 5** Fabian Kuhn **4**

Analysis

Number of priority queue operations for Dijkstra:

- Initialize-Heap: $\bf{1}$
- Is-Empty: \boldsymbol{n}
- **Insert:** \boldsymbol{n}
- Get-Min: $\boldsymbol{0}$
- **Delete-Min:** \boldsymbol{n}
- **Decrease-Key:** $\leq m$

 $\boldsymbol{0}$

Merge:

Assumption:

 $n = |V|$ (number of nodes) $m = |E|$ (number of edges)

•
$$
m \geq n-1
$$

#Decrease-Key:

Always for an unmarked neighbor ν of a newly marked node u

$$
\Rightarrow
$$
 \leq 1 decrease-key per edge

Can We Do Better?

• Cost of **Dijkstra** with **complete binary min-heap** implementation:

 $O(m \cdot \log n)$

• **Binary heap:**

insert, delete-min, and decrease-key cost $O(\log n)$

- One of the operations insert or delete-min must cost $\Omega(\log n)$:
	- Heap-Sort:

Insert n elements into heap, then take out the minimum n times

- (Comparison-based) sorting costs at least $\Omega(n \log n)$.
- But maybe we can improve decrease-key and one of the other two operations?

Fibonacci Heaps

Structure:

A Fibonacci heap H consists of a collection of trees satisfying the **min-heap** property.

Min-Heap Property:

Key of a node $v \leq$ keys of all nodes in any sub-tree of v

Structure:

A Fibonacci heap H consists of a collection of trees satisfying the min-heap property.

Variables:

- H. $min:$ root of the tree containing the (a) minimum key
- H. rootlist: circular, doubly linked, unordered list containing the roots of all trees
- \bullet H. size: number of nodes currently in H

Lazy Merging:

- To reduce the number of trees, sometimes, trees need to be merged
- Lazy merging: Do not merge as long as possible...

Algorithm Theory **Example 2018** Fabian Kuhn 8 Fabian Kuhn 8 8

Trees in Fibonacci Heaps

- $v. child:$ points to circular, doubly linked and unordered list of the children of ν
- $v. left, v. right: pointers to siblings (in doubly linked list)$
- v . $mark$: will be used later...

Advantages of circular, doubly linked lists:

- Deleting an element takes constant time
-

Algorithm Theory **Fabian Kuhn** 6 Fabian Kuhn 9

Example

Simple (Lazy) Operations

Initialize-Heap H :

• $H. rootlist := H. min := null$

Merge heaps H and H' :

- concatenate root lists
- update H . min

Insert element e into H :

- create new one-node tree containing $e \rightarrow H'$
	- mark of root node is set to **false**
- merge heaps H and H'

Get minimum element of H :

• return H min

Operation Delete-Min

Delete the node with minimum key from H and return its element:

 $H. min$

- 1. $m \coloneqq H \cdot min;$
- 2. **if** H . size > 0 then
- 3. remove H . min from H . $rootlist$;
- 4. add H . min . $child$ (list) to H . $rootlist$
- 5. **H. Consolidate**();

// Repeatedly merge nodes with equal degree in the root list // until degrees of nodes in the root list are distinct. // Determine the element with minimum key

6. **return**

Rank and Maximum Degree

Ranks of nodes, trees, heap:

Node v :

• $rank(v)$: number of children of v (degree of v)

Tree T :

• $rank(T)$: rank (degree) of root node of T

Heap H :

• $rank(H)$: maximum degree (#children) of any node in H

Assumption (n : number of nodes in H):

 $rank(H) \leq D(n)$

– for a known function $D(n)$

Algorithm Theory **Election Community** Fabian Kuhn **13**

Merging Two Trees

Given: Heap-ordered trees T, T' with $rank(T) = rank(T')$

Assume: min-key of $T \leq$ min-key of T'

Algorithm Theory **Algorithm Theory Fabian Kuhn** Fabian Kuhn 18

Algorithm Theory **Election Community** Fabian Kuhn **19** Fabian Kuhn

Algorithm Theory **Algorithm Theory Electro Contract Contra**

Consolidation of Root List

Array \vec{A} pointing to find roots with the same rank:

Operation Decrease-Key

Decrease-Key(v, x **): (decrease key of node** v **to new value** x **)**

- 1. **if** $x \ge v$ *key* then return
- 2. $v. key \coloneqq x;$
- 3. update H . min to point to v if necessary
- 4. **if** $v \in H$ rootlist $v \times \geq v$ parent key then return
- 5. **repeat**
- 6. parent $:= v$ parent
- 7. $H. cut(v)$
- 8. $v \coloneqq parent$
- 9. **until** \neg (*v***.** *mark*) \vee $\nu \in H$ *rootlist*
- 10. **if** $v \notin H$ rootlist then **v** mark $:=$ true

cut

new mark

Operation Cut (v)

Operation $H.\text{cut}(v)$:

- Cuts v' s sub-tree from its parent and adds v to rootlist
- 1. **if** $v \notin H$ rootlist then
- 2. $\frac{1}{2}$ // cut the link between v and its parent
- 3. $rank(v.parent) \coloneqq rank(v.parent) 1;$
- 4. remove ν from ν . $parent$. $child$ (list)
- 5. $v.parent \coloneqq null;$
- 6. add v to *H*. *rootlist*; $v.maxk := false$;

Decrease-Key Example

Fibonacci Heaps Marks

- Nodes in the root list (the tree roots) are always unmarked \rightarrow If a node is added to the root list (insert, decrease-key), the mark of the node is set to false.
- Nodes not in the root list can only get marked when a subtree is cut in a decrease-key operation
- A node ν is marked if and only if ν is not in the root list and ν has lost a child since v was attached to its current parent
	- a node can only change its parent by being moved to the root list

History of a node v **:**

- Hence, the boolean value v . $mark$ indicates whether node v has lost a child since the last time ν was made the child of another node.
- Nodes ν in the root list always have ν . $mark = false$

Cost of Delete-Min & Decrease-Key

Delete-Min:

- 1. Delete min. root r and add r . $child$ to H . $rootlist$ time: $0(1)$
- 2. Consolidate H. rootlist

time: $O(\text{length of } H.\text{ rootlist} + D(n))$

Step 2 can potentially be linear in n (size of H)

Decrease-Key (at node v **):**

1. If new key \leq parent key, cut sub-tree of node ν

time: $0(1)$

- 2. Cascading cuts up the tree as long as nodes are marked time: O (number of consecutive marked nodes)
- Step 2 can potentially be linear in n

Remark: Both operations can take $\Theta(n)$ **time in the worst case!**

Cost of Delete-Min & Decrease-Key

- Cost of delete-min and decrease-key can be $\Theta(n)$...
	- Seems a large price to pay to get insert in $O(1)$ time
- Maybe, the operations are efficient most of the time?
	- It seems to require a lot of operations to get a long rootlist and thus, an expensive consolidate operation
	- In each decrease-key operation, at most one node gets marked: We need a lot of decrease-key operations to get an expensive decrease-key operation
- Can we show that the average cost per operation is small?

⟹ requires **amortized analysis**

Amortized Cost of Fibonacci Heaps

- **Initialize-heap**, **is-empty**, **get-min**, **insert**, and **merge** have **worst-case** and **amortized cost** $O(1)$
- **Delete-min** has **amortized cost** $O(\log n)$
- **Decrease-key** has **amortized cost** $O(1)$
- Starting with an empty heap, any sequence of *operations* with at most n_d delete-min operations has total cost (time) $T = O(n + n_d \log n).$ $\frac{D_1^2 k_3 k_4}{O(m + n \log n)}$
- We will now need the marks…
- Cost for Dijkstra & Prim/Jarník: $O(m + n \log n)$

Cycle of a node:

- 1. Node ν is removed from root list and linked to a node v . mark = false
- 2. Child node u of v is cut and added to root list

 v . mark $\vcentcolon=$ true

3. Second child of ν is cut

node is cut as well and moved to root list v . $mark := false$

The boolean value v, $mark$ indicates whether node v has lost a child since the last time ν was made the child of another node.

Potential Function

System state characterized by two parameters:

- **R:** number of trees (length of H. rootlist)
- **M**: number of marked nodes (not in the root list)

Potential function:	\n $\Phi := \mathbf{R} + 2\mathbf{M}$ \n
---------------------	--

• $R = 7, M = 2 \rightarrow \Phi = 11$

Actual Time of Operations

- Operations: *initialize-heap, is-empty, insert*, *get-min*, *merge* actual time: $O(1)$
	- Normalize unit time such that

 t_{init} , $t_{is-empty}$, t_{insert} , $t_{get-min}$, $t_{merge} \leq 1$

- Operation *delete-min*:
	- Actual time: $O(\text{length of } H.\text{ rootlist} + D(n))$
	- Normalize unit time such that

 $t_{del-min} \leq D(n) +$ length of H. rootlist

- Operation **descrease-key**:
	- Actual time: $O(\text{length of path to next unmarked ancestor})$
	- Normalize unit time such that

 $t_{decr-kev} \leq$ length of path to next unmarked ancestor

Amortized Times

Assume operation i is of type:

• **initialize-heap:**

- actual time: t_i ≤ 1, potential: $Φ_{i-1} = Φ_i = 0$
- amortized time: $a_i = t_i + \Phi_i \Phi_{i-1} \leq 1$

• **is-empty, get-min:**

- actual time: $t_i \leq 1$, potential: $\Phi_i = \Phi_{i-1}$ (heap doesn't change)
- amortized time: $a_i = t_i + \Phi_i \Phi_{i-1} \leq 1$
- **merge:**
	- Actual time: $t_i \leq 1$
	- combined potential of both heaps: $\Phi_i = \Phi_{i-1}$
	- amortized time: $a_i = t_i + \Phi_i \Phi_{i-1} \leq 1$

Amortized Time of Insert

Assume that operation *i* is an *insert* operation:

- Actual time: $t_i \leq 1$
- **Potential function:**
	- $-$ *M* remains unchanged (no nodes are marked or unmarked, no marked nodes are moved to the root list)
	- $-$ R grows by 1 (one element is added to the root list)

$$
\underbrace{M_i = M_{i-1}}_{\underbrace{\Phi_i = \Phi_{i-1} + 1}} \underbrace{R_i = R_{i-1} + 1}
$$

• **Amortized time:**

$$
\underline{a_i} = \underline{t_i} + \underline{\Phi_i - \Phi_{i-1}} \leq 2
$$

Amortized Time of Delete-Min

-R.,

Assume that operation *i* is a *delete-min* operation:

Actual time: $t_i \leq D(n) + |H_{.}rootlist|$

Potential function $\Phi = R + 2M$ **:**

- R: changes from |H. rootlist| to at most $D(n) + 1$
- M : (# of marked nodes that are not in the root list)
	- Number of marks does not increase

 $M_i = M_{i-1}, \qquad R_i \leq R_{i-1} + D(n) + 1 - |H_{i} \text{rootlist}|$ $\Phi_i \leq \Phi_{i-1} + D(n) + \overline{1 - |H_{i} \cdot rootlist|}$ $\phi_i = R_i + 2M_i \leq R_{i-1} + 2M_{i-1} + D(n) + 1 - |H.n+1| + 1$
Amortized Time: D. $a_i = t_i + \underbrace{\Phi_i - \Phi_{i-1}}_{\beta} \leq 2D(n) + 1$
 $D(n) + H(n) + D(n+1) - H(n)$

Amortized Time of Decrease-Key

Assume that operation *i* is a *decrease-key* operation at node u :

Actual time: $t_i \leq \text{length of path to next unmarked ancestor } v$

Potential function $\Phi = R + 2M$ **:**

$$
\phi_i - \phi_{i-1} = k+1 + 2(-(k-i)) = -k+3
$$

- Assume, node u and nodes $u_1, ..., u_k$ are moved to root list
	- $u_1, ..., u_k$ are marked and moved to root list, v. mark is set to true

Algorithm Theory **Fabian Kuhn** 56 External Series of the Series and Series and Series and Series and Series and S

Amortized Time of Decrease-Key

Assume that operation *i* is a *decrease-key* operation at node u :

Actual time: $t_i \leq$ length of path to next unmarked ancestor ν

Potential function $\Phi = R + 2M$ **:**

- Assume, node u and nodes $u_1, ..., u_k$ are moved to root list $- u_1, ..., u_k$ are marked and moved to root list, v. mark is set to true
- $\geq k$ marked nodes go to root list, ≤ 1 node gets newly marked
- R grows by $\leq k + 1$, M grows by 1 and is decreased by $\geq k$

 $R_i \leq R_{i-1} + k + 1, \qquad M_i \leq M_{i-1} + 1 - k$ $\Phi_i \leq \Phi_{i-1} + (k+1) - 2(k-1) = \Phi_{i-1} + 3 - k$

Amortized time:

$$
a_i = t_i + \Phi_i - \Phi_{i-1} \le k + 1 + 3 - k = \underbrace{4}_{\equiv}
$$

Algorithm Theory **Fabian Kuhn** Fabian Kuhn 37

Complexities Fibonacci Heap

- Initialize-Heap: 0(1)
- **Is-Empty**: $\boldsymbol{0}(1)$
- **Insert**: $\boldsymbol{0}(1)$
- **Get-Min**: $\boldsymbol{0}(1)$
- **Delete-Min**: $\boldsymbol{O}(\boldsymbol{D}(\boldsymbol{n}))$ **amortized**
- **Decrease-Key**: $\boldsymbol{0}(1)$
- **Merge** (heaps of size m and $n, m \leq n$): $O(1)$
- **How large can** $D(n)$ **get?**

Rank of Children

Lemma:

Consider a node v of rank k and let $u_1, ..., u_k$ be the children of v in the order in which they were linked to v . Then,

 $rank(u_i) \geq i-2$.

Proof:

When u_i is added, v already has children $u_1, ..., u_{i-1}$: u_{i-1} ... u_1 $\boldsymbol{u_i}$ … $\overline{\nu}$ $\geq i-1$ $\geq i-1$ \Rightarrow $rank(u_i) \geq i-1$ when u_i is linked to $v.$ …

Each node can lose at most one child: \widetilde{u}_k $\langle u_4 \rangle \langle u_3 \rangle \langle u_2 \rangle \langle u_1 \rangle$ \dddotsc … $\geq k-2$ $\geq 2 \geq 1 \geq 0 \geq 0$ $\overline{\nu}$ \Rightarrow $rank(u_i) \geq i-2$ as long as u_i is linked to $v.$

Fibonacci Numbers:

$$
F_0 = 0, \qquad F_1 = 1, \qquad \forall k \ge 2: F_k = F_{k-2} + F_{k-1}
$$

Lemma:

In a Fibonacci heap, the size of the sub-tree of a node ν with rank k is at least F_{k+2} .

Proof:

• S_k : minimum size of the sub-tree of a node of rank k

Algorithm Theory **Fabian Kuhn** Fabian Kuhn **Fabian Kuhn** 40

Size of Trees

$$
S_0 = 1
$$
, $S_1 = 2$, $\forall k \ge 2: S_k \ge 2 + \sum_{i=0}^{k-2} S_i$

Claim about Fibonacci numbers:

$$
\forall k \geq 0: F_{k+2} = 1 + \sum_{i=0}^{k} F_i \qquad (F_0 = 0, F_1 = 1)
$$

 \mathbf{k}

0

Proof of claim (by induction on):

• **Base case (k = 0):**
$$
F_2 = 1 + \sum_{i=0}^{n} F_i = 1 + F_0 = 1
$$

• **Induction step** $(k > 0)$ **:**

$$
F_{k+2} = F_k + F_{k+1}
$$

1. **H.**: $F_{k+1} = 1 + \sum_{i=0}^{k-1} F_i$

Size of Trees

$$
S_0 = 1, S_1 = 2, \forall k \ge 2; S_k \ge 2 + \sum_{i=0}^{k-2} S_i, \qquad F_{k+2} = 1 + \sum_{i=0}^{k} F_i
$$

sum of lemma: $S \ge F$

Claim of lemma: $S_k \geq r_{k+2}$

Proof by induction on :

- Base case $(k = 0, k = 1)$: $S_0 \ge F_2 = 1$ $S_1 \ge F_3 = 2$
- Induction step $(k > 1)$:

Size of Trees

Lemma:

In a Fibonacci heap, the size of the sub-tree of a node v with rank k is at least F_{k+2} .

Theorem:

The maximum rank of a node in a Fibonacci heap of size n is at most

$$
D(n) = O(\log n)
$$

Proof:

• The Fibonacci numbers grow exponentially:

$$
F_k = \frac{1}{\sqrt{5}} \cdot \left(\left(\frac{1 + \sqrt{5}}{2} \right)^k - \left(\frac{1 - \sqrt{5}}{2} \right)^k \right)
$$

• For $D(n) \geq k$, we need $n \geq F_{k+2}$ nodes.

Algorithm Theory **Algorithm Theory Fabian Kuhn** Fabian Kuhn **43**

