
Algorithm Theory

Chapter 5

Data Structures

Fibonacci Heaps

Fabian Kuhn

Algorithm Theory Fabian Kuhn 2

Priority Queue / Heap

• Stores (key,data) pairs
– like a dictionary, but with a different set of operations

• Initialize-Heap: creates new empty heap

• Is-Empty: returns true if heap is empty

• Insert(key,data): inserts (key,data)-pair, returns pointer to entry

• Get-Min: returns (key,data)-pair with minimum key

• Delete-Min: deletes (and returns) minimum (key,data)-pair
– has to be consistent with get-min operation

• Decrease-Key(entry,newkey): decreases key of entry to newkey

• Merge: merges two heaps into one

Algorithm Theory Fabian Kuhn 3

Implementation of Dijkstra’s Algorithm

Dijkstra’s Algorithm:

1. Initialize 𝑑 𝑠, 𝑠 = 0 and 𝑑 𝑠, 𝑣 = ∞ for all 𝑣 ≠ 𝑠

2. All nodes 𝑣 ≠ 𝑠 are unmarked

3. Get unmarked node 𝑢 which minimizes 𝑑(𝑠, 𝑢):

4. mark node 𝑢

5. For all 𝑒 = 𝑢, 𝑣 ∈ 𝐸, 𝑑 𝑠, 𝑣 = min 𝑑 𝑠, 𝑣 , 𝑑 𝑠, 𝑢 + 𝑤 𝑒

6. Until all nodes are marked

data structure (DS) to manage all unmarked nodes,
add all nodes to DS with initial distance estimates 𝑑 𝑠, 𝑣

Get node 𝑢 from DS with minimum 𝑑 𝑠, 𝑢 ,
delete 𝑢 from DS

Potentially update 𝑑 𝑠, 𝑣 for all unmarked neighbors of 𝑢

unmarked 𝑣

create empty priority queue 𝑄,
add all nodes to 𝑄 with initial key 𝑑 𝑠, 𝑣

𝑢 ≔ 𝑄.delete_min()

For all unmarked neighbors 𝑣 of 𝑢: potentially call 𝑄.decrease_key

until 𝑄 is empty

Algorithm Theory Fabian Kuhn 4

Implementation of Prim/Jarník Algorithm

Start at node 𝒔, very similar to Dijkstra’s algorithm :

1. Initialize 𝑑 𝑠 = 0 and 𝑑 𝑣 = ∞ for all 𝑣 ≠ 𝑠

2. All nodes 𝑣 ≠ 𝑠 are unmarked

3. Get unmarked node 𝑢 which minimizes 𝑑(𝑢):

4. mark node 𝑢

5. For all 𝑒 = 𝑢, 𝑣 ∈ 𝐸, 𝑑 𝑣 = min 𝑑 𝑣 , 𝑤 𝑒

6. Until all nodes are marked

unmarked 𝑣

create empty priority queue 𝑄,
add all nodes to 𝑄 with initial key 𝑑 𝑣

𝑢 ≔ 𝑄.delete_min()

For all unmarked neighbors 𝑣 of 𝑢: potentially call 𝑄.decrease_key

until 𝑄 is empty

Algorithm Theory Fabian Kuhn 5

Analysis

Number of priority queue operations for Dijkstra:

• Initialize-Heap:

• Is-Empty:

• Insert:

• Get-Min:

• Delete-Min:

• Decrease-Key:

• Merge:

𝟏

𝒏

𝒏

𝟎

≤ 𝒎

𝒏

𝟎

Assumption:

𝑛 = 𝑉 (number of nodes)
𝑚 = 𝐸 (number of edges)

• 𝑚 ≥ 𝑛 − 1

#Decrease-Key:

Always for an unmarked neighbor 𝑣
of a newly marked node 𝑢

⟹≤ 1 decrease-key per edge

Algorithm Theory Fabian Kuhn 6

Can We Do Better?

• Cost of Dijkstra with complete binary min-heap implementation:

𝑂 𝑚 ⋅ log 𝑛

• Binary heap:
insert, delete-min, and decrease-key cost 𝑂(log 𝑛)

• One of the operations insert or delete-min must cost Ω(log 𝑛):
– Heap-Sort:

Insert 𝑛 elements into heap, then take out the minimum 𝑛 times

– (Comparison-based) sorting costs at least Ω(𝑛 log 𝑛).

• But maybe we can improve decrease-key and one of the other
two operations?

Algorithm Theory Fabian Kuhn 7

Fibonacci Heaps

Structure:

A Fibonacci heap 𝐻 consists of a collection of trees satisfying the
min-heap property.

Min-Heap Property:

Key of a node 𝑣 ≤ keys of all nodes in any sub-tree of 𝑣

3

8 7 5

9 7 15

8 7 12

Algorithm Theory Fabian Kuhn 8

Fibonacci Heaps

Structure:

A Fibonacci heap 𝐻 consists of a collection of trees satisfying the
min-heap property.

Variables:

• 𝐻.𝑚𝑖𝑛: root of the tree containing the (a) minimum key

• 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡: circular, doubly linked, unordered list containing
the roots of all trees

• 𝐻. 𝑠𝑖𝑧𝑒: number of nodes currently in 𝐻

Lazy Merging:

• To reduce the number of trees, sometimes, trees need to be
merged

• Lazy merging: Do not merge as long as possible...

Algorithm Theory Fabian Kuhn 9

Trees in Fibonacci Heaps

Structure of a single node 𝒗:

• 𝑣. 𝑐ℎ𝑖𝑙𝑑: points to circular, doubly linked and unordered list of
the children of 𝑣

• 𝑣. 𝑙𝑒𝑓𝑡, 𝑣. 𝑟𝑖𝑔ℎ𝑡: pointers to siblings (in doubly linked list)

• 𝑣.𝑚𝑎𝑟𝑘: will be used later…

Advantages of circular, doubly linked lists:

• Deleting an element takes constant time

• Concatenating two lists takes constant time

le
ft

parent

rig
h

tkey rank

child mark

Algorithm Theory Fabian Kuhn 10

Example

Figure: Cormen et al., Introduction to Algorithms

Algorithm Theory Fabian Kuhn 11

Simple (Lazy) Operations

Initialize-Heap 𝐻:

• 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡 ≔ 𝐻.𝑚𝑖𝑛 ≔ 𝑛𝑢𝑙𝑙

Merge heaps 𝐻 and 𝐻′:

• concatenate root lists

• update 𝐻.𝑚𝑖𝑛

Insert element 𝑒 into 𝐻:

• create new one-node tree containing 𝑒→ H′
– mark of root node is set to 𝐟𝐚𝐥𝐬𝐞

• merge heaps 𝐻 and 𝐻′

Get minimum element of 𝐻:

• return 𝐻.𝑚𝑖𝑛

Algorithm Theory Fabian Kuhn 12

Operation Delete-Min

Delete the node with minimum key from 𝐻 and return its element:

1. 𝑚 ≔ 𝐻.𝑚𝑖𝑛;

2. if 𝐻. 𝑠𝑖𝑧𝑒 > 0 then

3. remove 𝐻.𝑚𝑖𝑛 from 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡;

4. add 𝐻.𝑚𝑖𝑛. 𝑐ℎ𝑖𝑙𝑑 (list) to 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡

5. 𝑯.𝑪𝒐𝒏𝒔𝒐𝒍𝒊𝒅𝒂𝒕𝒆();

// Repeatedly merge nodes with equal degree in the root list
// until degrees of nodes in the root list are distinct.
// Determine the element with minimum key

6. return 𝑚

𝐻.𝑚𝑖𝑛

Algorithm Theory Fabian Kuhn 13

Rank and Maximum Degree

Ranks of nodes, trees, heap:

Node 𝑣:

• 𝑟𝑎𝑛𝑘(𝑣): number of children of 𝑣 (degree of 𝑣)

Tree 𝑇:

• 𝑟𝑎𝑛𝑘 𝑇 : rank (degree) of root node of 𝑇

Heap 𝐻:

• 𝑟𝑎𝑛𝑘(𝐻): maximum degree (#children) of any node in 𝐻

Assumption (𝑛: number of nodes in 𝐻):

𝑟𝑎𝑛𝑘 𝐻 ≤ 𝐷(𝑛)

– for a known function 𝐷(𝑛)

Algorithm Theory Fabian Kuhn 14

Merging Two Trees

Given: Heap-ordered trees 𝑇, 𝑇′ with 𝑟𝑎𝑛𝑘 𝑇 = 𝑟𝑎𝑛𝑘(𝑇′)

• Assume: min-key of 𝑇 < min-key of 𝑇′

Operation 𝒍𝒊𝒏𝒌(𝑻, 𝑻′):

• Removes tree 𝑇′ from root list
and adds 𝑇′ to child list of 𝑇

• 𝑟𝑎𝑛𝑘 𝑇 ≔ 𝑟𝑎𝑛𝑘 𝑇 + 1

• (𝑇′. 𝑚𝑎𝑟𝑘 = 𝐟𝐚𝐥𝐬𝐞)

𝑇 𝑇′

𝑙𝑖𝑛𝑘

𝑇

𝑇′

Algorithm Theory Fabian Kuhn 15

Consolidate Example

14

255

20

12 22

9

18

2

8

171

13

15 3

71931

14

255

20

12 22

9

18

2

8

171

13

15 3

719

31

𝒍𝒊𝒏𝒌

Algorithm Theory Fabian Kuhn 16

Consolidate Example

14

255

20

12 22

9

18

2

8

171

13

15 3

71931

𝒍𝒊𝒏𝒌

14 25

5

20

12 22

9

18

2

8

171

13

15 3

719

31

Algorithm Theory Fabian Kuhn 17

Consolidate Example

14 25

5

20

12 22

9

18

2

8

171

13

15

3

71931

14 25

5

20

12 22

9

18

2

8

171

13

15 3

719

31

𝒍𝒊𝒏𝒌

Algorithm Theory Fabian Kuhn 18

Consolidate Example

14

255

20

12 22

9

18

2

8

171

13

15

3

71931

14 25

5

20

12 22

9

18

2

8

171

13

15

3

71931

𝒍𝒊𝒏𝒌

Algorithm Theory Fabian Kuhn 19

Consolidate Example

14

255

20

12 22

9

18

2

8 17

1

13

15

3

71931

14

255

20

12 22

9

18

2

8

171

13

15

3

71931

𝒍𝒊𝒏𝒌

Algorithm Theory Fabian Kuhn 20

Consolidate Example

14

255

20

12 22

9

18

2

8

17

1

13 153

71931

14

255

20

12 22

9

18

2

8 17

1

13

15

3

71931

𝒍𝒊𝒏𝒌

Algorithm Theory Fabian Kuhn 21

Consolidation of Root List

Array 𝐴 pointing to find roots with the same rank:

Consolidate:

1. for 𝑖 ≔ 0 to 𝐷(𝑛) do 𝐴 𝑖 ≔ null

2. while 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡 ≠ null do

3. 𝑇 ≔ “delete and return first element of 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡”

4. while 𝐴 𝑟𝑎𝑛𝑘 𝑇 ≠ null do

5. 𝑇′ ≔ 𝐴 𝑟𝑎𝑛𝑘 𝑇

6. 𝐴 𝑟𝑎𝑛𝑘 𝑇 ≔ 𝑛𝑢𝑙𝑙

7. 𝑇 ≔ 𝑙𝑖𝑛𝑘(𝑇, 𝑇′)

8. 𝐴 𝑟𝑎𝑛𝑘 𝑇 ≔ 𝑇

9. Create new 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡 and 𝐻.𝑚𝑖𝑛

⋯
0 1 2 𝐷(𝑛)

Time:

𝑶(|𝑯. 𝒓𝒐𝒐𝒕𝒍𝒊𝒔𝒕 +𝑫 𝒏

Algorithm Theory Fabian Kuhn 22

Operation Decrease-Key

Decrease-Key(𝒗, 𝒙): (decrease key of node 𝑣 to new value 𝑥)

1. if 𝑥 ≥ 𝑣. 𝑘𝑒𝑦 then return

2. 𝑣. 𝑘𝑒𝑦 ≔ 𝑥;

3. update 𝐻.𝑚𝑖𝑛 to point to 𝑣 if necessary

4. if 𝑣 ∈ 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡 ∨ 𝑥 ≥ 𝑣. 𝑝𝑎𝑟𝑒𝑛𝑡. 𝑘𝑒𝑦 then return

5. repeat

6. 𝑝𝑎𝑟𝑒𝑛𝑡 ≔ 𝑣. 𝑝𝑎𝑟𝑒𝑛𝑡

7. 𝑯. 𝒄𝒖𝒕 𝒗

8. 𝑣 ≔ 𝑝𝑎𝑟𝑒𝑛𝑡

9. until ¬ 𝒗.𝒎𝒂𝒓𝒌 ∨ 𝑣 ∈ 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡

10. if 𝑣 ∉ 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡 then 𝒗.𝒎𝒂𝒓𝒌 ≔ 𝐭𝐫𝐮𝐞
𝑣: new key 𝑥

key 𝑦 > 𝑥
cut

cut

cut
new mark

Algorithm Theory Fabian Kuhn 23

Operation Cut(𝑣)

Operation 𝐻. 𝑐𝑢𝑡(𝑣):

• Cuts 𝑣’s sub-tree from its parent and adds 𝑣 to rootlist

1. if 𝑣 ∉ 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡 then

2. // cut the link between 𝑣 and its parent

3. 𝑟𝑎𝑛𝑘 𝑣. 𝑝𝑎𝑟𝑒𝑛𝑡 ≔ 𝑟𝑎𝑛𝑘 𝑣. 𝑝𝑎𝑟𝑒𝑛𝑡 − 1;

4. remove 𝑣 from 𝑣. 𝑝𝑎𝑟𝑒𝑛𝑡. 𝑐ℎ𝑖𝑙𝑑 (list)

5. 𝑣. 𝑝𝑎𝑟𝑒𝑛𝑡 ≔ null;

6. add 𝑣 to 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡; 𝑣.𝑚𝑎𝑟𝑘 ≔ false;

25

2

8

1

13

15

3

71931

𝒄𝒖𝒕(𝒗)
𝒗

25

2

8

1

13

153

719

31

𝒗

Algorithm Theory Fabian Kuhn 24

Decrease-Key Example

• Green nodes are marked

14 25

5

20

12

22

9

18

2

8

171

13

15

3

71931

Decrease-Key(𝒗, 𝟖)

𝒗

14 25

5

20 1222

98 2

8

171

13

15

3

71931

8

Algorithm Theory Fabian Kuhn 25

Fibonacci Heaps Marks

• Nodes in the root list (the tree roots) are always unmarked
→ If a node is added to the root list (insert, decrease-key), the

mark of the node is set to false.

• Nodes not in the root list can only get marked when a subtree
is cut in a decrease-key operation

• A node 𝑣 is marked if and only if 𝑣 is not in the root list and 𝑣
has lost a child since 𝑣 was attached to its current parent
– a node can only change its parent by being moved to the root list

Algorithm Theory Fabian Kuhn 26

Fibonacci Heap Marks

History of a node 𝒗:

𝑣 is being linked to a node 𝒗.𝒎𝒂𝒓𝒌 = 𝐟𝐚𝐥𝐬𝐞

a child of 𝑣 is cut 𝒗.𝒎𝒂𝒓𝒌 ≔ 𝐭𝐫𝐮𝐞

a second child of 𝑣 is cut 𝑯. 𝒄𝒖𝒕 𝒗 ;
𝒗.𝒎𝒂𝒓𝒌 ≔ 𝒇𝒂𝒍𝒔𝒆

• Hence, the boolean value 𝑣.𝑚𝑎𝑟𝑘 indicates whether node 𝑣 has
lost a child since the last time 𝑣 was made the child of another
node.

• Nodes 𝑣 in the root list always have 𝑣.𝑚𝑎𝑟𝑘 = false

Algorithm Theory Fabian Kuhn 27

Cost of Delete-Min & Decrease-Key

Delete-Min:

1. Delete min. root 𝑟 and add 𝑟. 𝑐ℎ𝑖𝑙𝑑 to 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡
time: 𝑂 1

2. Consolidate 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡
time: 𝑂 length of 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡 + 𝐷(𝑛)

• Step 2 can potentially be linear in 𝑛 (size of 𝐻)

Decrease-Key (at node 𝒗):

1. If new key < parent key, cut sub-tree of node 𝑣
time: 𝑂(1)

2. Cascading cuts up the tree as long as nodes are marked
time: 𝑂(number of consecutive marked nodes)

• Step 2 can potentially be linear in 𝑛

Remark: Both operations can take 𝚯(𝒏) time in the worst case!

Algorithm Theory Fabian Kuhn 28

Cost of Delete-Min & Decrease-Key

• Cost of delete-min and decrease-key can be Θ(𝑛)…
– Seems a large price to pay to get insert in 𝑂(1) time

• Maybe, the operations are efficient most of the time?
– It seems to require a lot of operations to get a long rootlist and thus,

an expensive consolidate operation

– In each decrease-key operation, at most one node gets marked:
We need a lot of decrease-key operations to get an expensive
decrease-key operation

• Can we show that the average cost per operation is small?

⟹ requires amortized analysis

Algorithm Theory Fabian Kuhn 29

Amortized Cost of Fibonacci Heaps

• Initialize-heap, is-empty, get-min, insert, and merge
have worst-case and amortized cost 𝑶(𝟏)

• Delete-min has amortized cost 𝑶(𝐥𝐨𝐠𝒏)

• Decrease-key has amortized cost 𝑶(𝟏)

• Starting with an empty heap, any sequence of 𝑛 operations
with at most 𝑛𝑑 delete-min operations has total cost (time)

𝑻 = 𝑶 𝒏 + 𝒏𝒅 𝐥𝐨𝐠𝒏 .

• We will now need the marks…

• Cost for Dijkstra & Prim/Jarník: 𝑂 𝑚 + 𝑛 log 𝑛

Algorithm Theory Fabian Kuhn 30

Fibonacci Heaps: Marks

Cycle of a node:

1. Node 𝑣 is removed from root list and linked to a node
𝒗.𝒎𝒂𝒓𝒌 = 𝐟𝐚𝐥𝐬𝐞

2. Child node 𝑢 of 𝑣 is cut and added to root list
𝒗.𝒎𝒂𝒓𝒌 ≔ 𝐭𝐫𝐮𝐞

3. Second child of 𝑣 is cut
node 𝒗 is cut as well and moved to root list
𝒗.𝒎𝒂𝒓𝒌 ≔ 𝐟𝐚𝐥𝐬𝐞

The boolean value 𝑣.𝑚𝑎𝑟𝑘 indicates whether node 𝑣 has lost a
child since the last time 𝑣 was made the child of another node.

Algorithm Theory Fabian Kuhn 31

Potential Function

System state characterized by two parameters:

• 𝑹: number of trees (length of 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡)

• 𝑴: number of marked nodes (not in the root list)

Potential function:
𝚽 ≔ 𝑹+ 𝟐𝑴

Example:

• 𝑅 = 7, 𝑀 = 2 → Φ = 11

14 25

5

20 1222

918 2

8

171

13

15

3

71931

Algorithm Theory Fabian Kuhn 32

Actual Time of Operations

• Operations: initialize-heap, is-empty, insert, get-min, merge

actual time: 𝑂(1)

– Normalize unit time such that

𝑡𝑖𝑛𝑖𝑡 , 𝑡𝑖𝑠−𝑒𝑚𝑝𝑡𝑦, 𝑡𝑖𝑛𝑠𝑒𝑟𝑡 , 𝑡𝑔𝑒𝑡−𝑚𝑖𝑛, 𝑡𝑚𝑒𝑟𝑔𝑒 ≤ 1

• Operation delete-min:

– Actual time: 𝑂 length of 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡 + 𝐷 𝑛

– Normalize unit time such that

𝑡𝑑𝑒𝑙−𝑚𝑖𝑛 ≤ 𝐷 𝑛 + length of 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡

• Operation descrease-key:
– Actual time: 𝑂 length of path to next unmarked ancestor

– Normalize unit time such that

𝑡𝑑𝑒𝑐𝑟−𝑘𝑒𝑦 ≤ length of path to next unmarked ancestor

Algorithm Theory Fabian Kuhn 33

Amortized Times

Assume operation 𝑖 is of type:

• initialize-heap:
– actual time: 𝑡𝑖 ≤ 1, potential: Φ𝑖−1 = Φ𝑖 = 0

– amortized time: 𝑎𝑖 = 𝑡𝑖 +Φ𝑖 −Φ𝑖−1 ≤ 1

• is-empty, get-min:
– actual time: 𝑡𝑖 ≤ 1, potential: Φ𝑖 = Φ𝑖−1 (heap doesn’t change)

– amortized time: 𝑎𝑖 = 𝑡𝑖 +Φ𝑖 −Φ𝑖−1 ≤ 1

• merge:
– Actual time: 𝑡𝑖 ≤ 1

– combined potential of both heaps: Φ𝑖 = Φ𝑖−1

– amortized time: 𝑎𝑖 = 𝑡𝑖 +Φ𝑖 −Φ𝑖−1 ≤ 1

Algorithm Theory Fabian Kuhn 34

Amortized Time of Insert

Assume that operation 𝑖 is an insert operation:

• Actual time: 𝑡𝑖 ≤ 1

• Potential function:
– 𝑀 remains unchanged (no nodes are marked or unmarked, no marked

nodes are moved to the root list)

– 𝑅 grows by 1 (one element is added to the root list)

𝑀𝑖 = 𝑀𝑖−1, 𝑅𝑖 = 𝑅𝑖−1 + 1
Φ𝑖 = Φ𝑖−1 + 1

• Amortized time:

𝒂𝒊 = 𝒕𝒊 +𝚽𝒊 −𝚽𝒊−𝟏 ≤ 𝟐

Algorithm Theory Fabian Kuhn 35

Amortized Time of Delete-Min

Assume that operation 𝑖 is a delete-min operation:

Actual time: 𝑡𝑖 ≤ 𝐷 𝑛 + 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡

Potential function 𝚽 = 𝑹+ 𝟐𝑴:

• 𝑅: changes from 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡 to at most 𝐷 𝑛 + 1

• 𝑀: (# of marked nodes that are not in the root list)
– Number of marks does not increase

𝑀𝑖 = 𝑀𝑖−1, 𝑅𝑖 ≤ 𝑅𝑖−1 + 𝐷 𝑛 + 1 − 𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡
Φ𝑖 ≤ Φ𝑖−1 + 𝐷 𝑛 + 1 − |𝐻. 𝑟𝑜𝑜𝑡𝑙𝑖𝑠𝑡|

Amortized Time:
𝒂𝒊 = 𝒕𝒊 +𝚽𝒊 −𝚽𝒊−𝟏 ≤ 𝟐𝑫 𝒏 + 𝟏

Algorithm Theory Fabian Kuhn 36

Amortized Time of Decrease-Key

Assume that operation 𝑖 is a decrease-key operation at node 𝑢:

Actual time: 𝑡𝑖 ≤ length of path to next unmarked ancestor 𝑣

Potential function 𝚽 = 𝑹+ 𝟐𝑴:

• Assume, node 𝑢 and nodes 𝑢1, … , 𝑢𝑘 are moved to root list
– 𝑢1, … , 𝑢𝑘 are marked and moved to root list, 𝑣.mark is set to true

𝑢

𝑢1

𝑢2

𝑢𝑘−1

𝑢𝑘

𝑣
new mark

mark removed

marks root list

Removed marks:
𝑢1, … , 𝑢𝑘

(and 𝑢, if 𝑢 is marked)

Added mark: 𝑣

𝑴𝒊 −𝑴𝒊−𝟏 ≤ −(𝒌 − 𝟏)

Added to root list:
𝑢, 𝑢1, … , 𝑢𝑘

𝑹𝒊 − 𝑹𝒊−𝟏 = 𝒌 + 𝟏

Algorithm Theory Fabian Kuhn 37

Amortized Time of Decrease-Key

Assume that operation 𝑖 is a decrease-key operation at node 𝑢:

Actual time: 𝑡𝑖 ≤ length of path to next unmarked ancestor 𝑣

Potential function 𝚽 = 𝑹+ 𝟐𝑴:

• Assume, node 𝑢 and nodes 𝑢1, … , 𝑢𝑘 are moved to root list
– 𝑢1, … , 𝑢𝑘 are marked and moved to root list, 𝑣.mark is set to true

• ≥ 𝑘 marked nodes go to root list, ≤ 1 node gets newly marked

• 𝑅 grows by ≤ 𝑘 + 1, 𝑀 grows by 1 and is decreased by ≥ 𝑘

𝑅𝑖 ≤ 𝑅𝑖−1 + 𝑘 + 1, 𝑀𝑖 ≤ 𝑀𝑖−1 + 1 − 𝑘
Φ𝑖 ≤ Φ𝑖−1 + 𝑘 + 1 − 2 𝑘 − 1 = Φ𝑖−1 + 3 − 𝑘

Amortized time:

𝒂𝒊 = 𝒕𝒊 +𝚽𝒊 −𝚽𝒊−𝟏 ≤ 𝒌 + 𝟏 + 𝟑 − 𝒌 = 𝟒

Algorithm Theory Fabian Kuhn 38

Complexities Fibonacci Heap

• Initialize-Heap:

• Is-Empty:

• Insert:

• Get-Min:

• Delete-Min:

• Decrease-Key:

• Merge (heaps of size 𝑚 and 𝑛, 𝑚 ≤ 𝑛):

• How large can 𝑫(𝒏) get?

𝑶(𝟏)

𝑶(𝟏)

𝑶 𝟏

𝑶(𝟏)

𝑶 𝟏

𝑶 𝑫(𝒏)

𝑶 𝟏
amortized

Algorithm Theory Fabian Kuhn 39

Rank of Children

Lemma:

Consider a node 𝑣 of rank 𝑘 and let 𝑢1, … , 𝑢𝑘 be the children of 𝑣 in
the order in which they were linked to 𝑣. Then,

𝒓𝒂𝒏𝒌 𝒖𝒊 ≥ 𝒊 − 𝟐.

Proof:

When 𝑢𝑖 is added, 𝑣 already
has children 𝑢1, … , 𝑢𝑖−1:

𝑢1𝑢𝑖−1

𝒖𝒊

⋯

𝑣
≥ 𝑖 − 1

≥ 𝑖 − 1

⟹ 𝑟𝑎𝑛𝑘 𝑢𝑖 ≥ 𝑖 − 1 when
𝑢𝑖 is linked to 𝑣.

Each node can lose
at most one child:

𝑢1𝑢2𝑢3𝑢4𝑢𝑘
⋯

⋯

⋯

≥ 𝑘 − 2 ≥ 1≥ 2 ≥ 0

𝑣

⟹ 𝑟𝑎𝑛𝑘 𝑢𝑖 ≥ 𝑖 − 2 as long
as 𝑢𝑖 is linked to 𝑣.

≥ 0

Algorithm Theory Fabian Kuhn 40

Size of Trees

Fibonacci Numbers:
𝐹0 = 0, 𝐹1 = 1, ∀𝑘 ≥ 2: 𝐹𝑘 = 𝐹𝑘−2 + 𝐹𝑘−1

Lemma:
In a Fibonacci heap, the size of the sub-tree of a node 𝑣 with
rank 𝑘 is at least 𝐹𝑘+2.

Proof:

• 𝑆𝑘: minimum size of the sub-tree of a node of rank 𝑘

𝑺𝟎 = 𝟏:

𝑺𝟏 = 𝟐:

𝑺𝒌 ≥ 𝟐 +

𝒋=𝟎

𝒌−𝟐

𝑺𝒋 :

𝑢1𝑢2𝑢3𝑢4𝑢𝑘

⋯

⋯

≥ 𝑆𝑘−2 ≥ 𝑆1≥ 𝑆2 ≥ 𝑆0

𝑣

= 2

Algorithm Theory Fabian Kuhn 41

Size of Trees

𝑆0 = 1, 𝑆1 = 2, ∀𝑘 ≥ 2: 𝑆𝑘 ≥ 2 +

𝑖=0

𝑘−2

𝑆𝑖

Claim about Fibonacci numbers:

∀𝑘 ≥ 0: 𝐹𝑘+2 = 1 +

𝑖=0

𝑘

𝐹𝑖

Proof of claim (by induction on 𝒌):

• Base case (𝒌 = 𝟎):

• Induction step (𝒌 > 𝟎):

(𝐹0 = 0, 𝐹1 = 1)

𝐹2 = 1 +

𝑖=0

0

𝐹𝑖 = 1 + 𝐹0 = 1

𝐹𝑘+2 = 𝐹𝑘 + 𝐹𝑘+1 = 𝐹𝑘 + 1 +

𝑖=0

𝑘−1

𝐹𝑖 = 1 +

𝑖=0

𝑘

𝐹𝑖

I.H.: 𝐹𝑘+1 = 1 +

𝑖=0

𝑘−1

𝐹𝑖

Algorithm Theory Fabian Kuhn 42

Size of Trees

𝑆0 = 1, 𝑆1 = 2, ∀𝑘 ≥ 2: 𝑆𝑘 ≥ 2 +

𝑖=0

𝑘−2

𝑆𝑖 , 𝐹𝑘+2 = 1 +

𝑖=0

𝑘

𝐹𝑖

Claim of lemma: 𝑆𝑘 ≥ 𝐹𝑘+2

Proof by induction on 𝒌:

• Base case (𝑘 = 0, 𝑘 = 1):

• Induction step (𝑘 > 1):

𝑆0 ≥ 𝐹2 = 1 𝑆1 ≥ 𝐹3 = 2

𝑆𝑘 ≥ 2 +

𝑖=0

𝑘−2

𝑆𝑖 ≥ 2 +

𝑖=0

𝑘−2

𝐹𝑖+2 = 2 +

𝑗=2

𝑘

𝐹𝑗 = 1 +

𝑗=0

𝑘

𝐹𝑗 = 𝐹𝑘+2

I.H. 𝑗 = 𝑖 + 2 𝐹0 = 0, 𝐹1 = 1 previous claim
on Fibonacci

numbers

Algorithm Theory Fabian Kuhn 43

Size of Trees

Lemma:
In a Fibonacci heap, the size of the sub-tree of a node 𝑣 with rank 𝑘
is at least 𝐹𝑘+2.

Theorem:
The maximum rank of a node in a Fibonacci heap of size 𝑛 is at most

𝑫 𝒏 = 𝑶(𝐥𝐨𝐠𝒏) .

Proof:

• The Fibonacci numbers grow exponentially:

𝐹𝑘 =
1

5
⋅

1 + 5

2

𝑘

−
1 − 5

2

𝑘

• For 𝐷 𝑛 ≥ 𝑘, we need 𝑛 ≥ 𝐹𝑘+2 nodes.

Algorithm Theory Fabian Kuhn 44

Binary Heaps & Fibonacci Heaps

Binary Heap Fibonacci Heap

initialize 𝑶(𝟏) 𝑶(𝟏)

insert 𝑶(𝐥𝐨𝐠 𝒏) 𝑶(𝟏)

get-min 𝑶(𝟏) 𝑶(𝟏)

delete-min 𝑶(𝐥𝐨𝐠 𝒏) 𝑶(𝐥𝐨𝐠 𝒏) *

decrease-key 𝑶 𝐥𝐨𝐠 𝒏 𝑶(𝟏) *

is-empty 𝑶(𝟏) 𝑶(𝟏)

∗ amortized time

