Algorithm Theory

Chapter 5
Data Structures

Fibonacci Heaps

Fabian Kuhn

UNI
I

FREIBURG

Priority Queue / Heap

UNI
f

FREIBURG

» Stores (key,data) pairs
— like a dictionary, but with a different set of operations

* Initialize-Heap: creates new empty heap

* Is-Empty: returns true if heap is empty

* Insert(key,data): inserts (key,data)-pair, returns pointer to entry
* Get-Min: returns (key,data)-pair with minimum key

* Delete-Min: deletes (and returns) minimum (key,data)-pair

— has to be consistent with get-min operation
* Decrease-Key(entry,newkey): decreases key of entry to newkey
 Merge: merges two heaps into one

Algorithm Theory Fabian Kuhn 2

UNI

Implementation of Dijkstra’s Algorithm

FREIBURG

Dijkstra’s Algorithm:

Initialize d(s,s) = 0and d(s,v) = o forallv # s
2. All nodes v # s are unmarked

create empty priority queue 0, 1 nodes,
add all nodes to Q with initial key d(s,v) |mates d(s,v)

3. Get unmarked node u which minimizes d(s, u):
4, mark node u

u := Q.delete_min() vith minimum d(s, u),
delete u from DS

unmarked v
5. Foralle = {u,v} € E, d(s,v) = min{d(s,v),d(s,u) + w(e)}

For all unmarked neighbors v of u: potentially call Q.decrease_key

6. Until all nodes are marked

ﬁ until Q is empty

Algorithm Theory Fabian Kuhn 3

UNI

Implementation of Prim/Jarnik Algorithm

FREIBURG

Start at node s, very similar to Dijkstra’s algorithm :

1. Initialize d(s) = 0andd(v) = o forallv # s
2. All nodes v # s are unmarked

create empty priority queue 0,
add all nodes to Q with initial key d(v)

3. Get unmarked node u which minimizes d(u):

4, mark node u

u == (.delete_min()

unmarked v /
5. Foralle = {u,v} € E, d(v) = min{d(v),w(e)}

For all unmarked neighbors v of u: potentially call Q.decrease key

6. Until all nodes are marked

ﬁ until Q is empty

Algorithm Theory Fabian Kuhn 4

Analysis

Number of priority queue operations for Dijkstra: |

Initialize-Heap: 1

Is-Empty: n
Insert: @
Get-Min: 0

Delete-Min: @
Decrease-Key: @

Merge:

Algorithm Theory

w\ .
Assumpt}p’n:/'
n = |V| (humber of nodes)
= |E| (number of edges)

*m=2n—1

#Decrease-Key:

Always for an unmarked neighbor v
of a newly marked node u

— < 1 decrease-key per edge

Fabian Kuhn

UNI
f

FREIBURG

Can We Do Better?

UNI
FREIBURG

* Cost of Dijkstra with complete binary min-heap implementation:

Q(n - logn)

e Binary heap:
insert, delete-min, and decrease-key cost O (logn)

* One of the operations insert or delete-min must cost (2(logn):

— Heap-Sort:
\
Insert n elements into heap, then take out the minimum n times

— (Comparison-based) sorting costs at least (nlogn).

* But maybe we can improve decrease-key and one of the other
two operations?

Algorithm Theory Fabian Kuhn 6

UNI

Fibonacci Heaps

FREIBURG

A\
A Fibonacci heap H consists of a collection of trees satisfying the
min-heap property.

Structure:

Min-Heap Property:

Key of a node v < keys of all nodes in any sub-tree of v

Algorithm Theory Fabian Kuhn 7

Fibonacci Heaps

UNI

FREIBURG

Structure:

A Fibonacci heap H consists of a collection of trees satisfying the
min-heap property.

Variables:
* H.min: root of the tree containing the (a) minimum key

 H.rootlist: circular, doubly linked, unordered list containing
the roots of all trees

* H.size: number of nodes currently in H

—_—

Lazy Merging:

 To reduce the number of trees, sometimes, trees need to be
merged

* Lazy merging: Do not merge as long as possible...

Algorithm Theory Fabian Kuhn

UNI

Trees in Fibonacci Heaps

FREIBURG

Structure of a single node v: /‘
= > S >
= k__y rank =
child, | mark
/

* v.child: points to circular, doubly linked and unordered list of
the children of v

* v.left, v.right: pointers to siblings (in doubly linked list)

o v.mark: will be used later...
VIT DE Used et

Advantages of circular, doubly linked lists:
e Deleting an element takes constant time
* Concatenating two lists takes constant time

Algorithm Theory Fabian Kuhn 9

Example

UNI
FREIBURG

[

p Figure: Cormen et al., Introduction to Algorithms

Algorithm Theory Fabian Kuhn 10

Simple (Lazy) Operations

UNI

FREIBURG

Initialize-Heap H.:
e H.rootlist := H.min = null

T

Merge heaps H and H':
e concatenate root lists
 update H.min

Insert element e into H:

* create new one-node tree containing e 2> H’
— mark of root node is set to false

* merge heaps\H and H'

Get minimum element of H:
e return H.min

Algorithm Theory Fabian Kuhn

11

Operation Delete-Min

UNI
f

FREIBURG

Delete the node with minimum key from H and return its element:
H.min

O—0 1@ :
m = H.min; A_ =y \\m

if H.size > 0 then
remove H. min from H.rootlist;
add H.min. child (list) to H.rootlist
H.Consolidate();

—~

// Repeatedly merge nodes with equal degree in the root list
// until degrees of nodes in the root list are distinct.
// Determine the element with minimum key

A S

6. returnm

Algorithm Theory Fabian Kuhn 12

Rank and Maximum Degree

UNI

FREIBURG

Ranks of nodes, trees, heap:

Node v:
* rank(v): number of children of v (degree of v)

Tree T
 rank(T): rank (degree) of root node of T

Heap H:
* rank(H): maximum degree (#children) of any node in H

Assumption (n: number of nodes in H):
rank(H) < D(n)

—

— for a known function D (n)

_—
——
—

Algorithm Theory Fabian Kuhn

13

UNI

Merging Two Trees

FREIBURG

Given: Heap-ordered trees T, T’ with rank(T) = rank(T")

—
* Assume: min-key of T < min-key of T’
ey oL

Operation link(T,T'): link
T /

e Removes tree T' from root list

and adds T’ to child list of T @K@

e rank(T) :=rank(T) + 1
 (T'.mark = false)

Algorithm Theory Fabian Kuhn 14

Consolidate Example

link

----- —® g@@

-

Algorithm Theory Fabian Kuhn

Consolidate Example

link

Algorithm Theory Fabian Kuhn

16

Consolidate Example

Algorithm Theory Fabian Kuhn

17

Consolidate Example

link

Algorithm Theory Fabian Kuhn

18

Consolidate Example

Algorithm Theory Fabian Kuhn

19

Consolidate Example

Algorithm Theory Fabian Kuhn

20

Consolidation of Root List Tl,?‘l —

UNI

FREIBURG

Array A pointing to find roots with the same rank:

012 D)
Consolidate: -
. 1= null Time:
fori := 0to D(n) do Ali] := nu O(|H. rootlist|+D(n))
: iwhile H.rootlist # null do — S—

1
2
3 T := “delete and return first element of H.rootlist”
4. ‘while A[rank(T)] # null do li

’ o ? N\'C'kL [ENUN
5. T' == Alrank(T)] !

{O(\)

6
7
8
9

—

|
Alrank(T)] = null I],
T = link(T,T") ¥ J,l]/ (i)
l
|

_—

Alrank(T)] =T | e
. Create new H.rootlist and H.min

g“éc‘\)

. \ .
Algorithm Theory Fabian Kuhn 21

Operation Decrease-Key

UNI
f

FREIBURG

Decrease-Key(v, x): (decrease key of node v to new value x)
\2

1. if x = v.key then return 74\0/
2. v.key = x; 6,0

3. update H.min to point to v if necessary /é \\

4. ifv € H.rootlist V x = v.parent. key then return

5. repeat e

6. parent := v.parent Cew mar 'ﬁ

7. H.cut(v) cut

8. vV = parent cut

9. until =(v.mark) V v € H.rootlist eyy > x

10. if v € H.rootlist then v. mark = true cut
— v: new key x

Algorithm Theory Fabian Kuhn 22

UNI

Operation Cut(v)

FREIBURG

Operation H. cut(v):
e Cuts v’s sub-tree from its parent and adds v to rootlist

if v & H.rootlist then
// cut the link between v and its parent
rank(v.parent) = rank(v.parent) — 1;

remove v from v.parent. child (list)

v.parent := null;

A A T o o

add v to H.rootlist; v.mark := false;

Algorithm Theory Fabian Kuhn 23

Decrease-Key Example

UNI

FREIBURG

e Green nodes are marked

Algorithm Theory Fabian Kuhn

24

UNI

Fibonacci Heaps Marks

FREIBURG

 Nodes in the root list (the tree roots) are always unmarked
— If a node is added to the root list (insert, decrease-key), the
mark of the node is set to false.

 Nodes not in the root list can only get marked when a subtree
is cut in a decrease-key operation

* Anode vis marked if and only if v is not in the root list and v
has lost a child since v was attached to its current parent

— a node can only change its parent by being moved to the root list

Algorithm Theory Fabian Kuhn 25

Fibonacci Heap Marks

|
FRE:BURG

UNI

History of a node v:

v is being linked to a node v.mark = false
a child of v is cut v.mark := true
a second child of v is cut H.cut(v);

v.mark = false

 Hence, the boolean value v. mark indicates whether node v has
lost a child since the last time v was made the child of another
node.

 Nodes v in the root list always have v.mark = false

Algorithm Theory Fabian Kuhn 26

Cost of Delete-Min & Decrease-Key

UNI

FREIBURG

Delete-Min:

1. Delete min. root r and add r. child to H.rootlist
time: 0(1)

2. Consolidate H.rootlist
time: O(length of H.rootlist + D(n))

e Step 2 can potentially be linear in n (size of H)

Decrease-Key (at node v):

1. If new key < parent key, cut sub-tree of node v
time: 0(1)

2. Cascading cuts up the tree as long as nodes are marked
time: O (number of consecutive marked nodes)

e Step 2 can potentially be linearin n

Remark: Both operations can take ®(n) time in the worst case!

Algorithm Theory Fabian Kuhn

27

Cost of Delete-Min & Decrease-Key

UNI

FREIBURG

* Cost of delete-min and decrease-key can be O(n)...

— Seems a large price to pay to get insertin O(1) time

 Maybe, the operations are efficient most of the time?

— |t seems to require a lot of operations to get a long rootlist and thus,
an expensive consolidate operation

— In each decrease-key operation, at most one node gets marked:
We need a lot of decrease-key operations to get an expensive
decrease-key operation

* Can we show that the average cost per operation is small?

= requires amortized analysis

Algorithm Theory Fabian Kuhn

28

Amortized Cost of Fibonacci Heaps

* [|nitialize-heap, is-empty, get-min, insert, and merge
have worst-case and amortized cost O(1)

* Delete-min has amortized cost O(logn)
* Decrease-key has amortized cost O(1)

e Starting with an empty heap, any sequence of n operations

with at most n; delete-min operations has total cost (time)

Dt ska L
T =0n+nyzlogn). -)_(;(m X “‘°§“\

e We will now need the marks...

* Cost for Dijkstra & Prim/Jarnik: O(m + nlogn)

Algorithm Theory Fabian Kuhn

UNI
f

FREIBURG

Fibonacci Heaps: Marks

|
FRE:BURG

UNI

Cycle of a node:

1. Node v is removed from root list and linked to a node
v.mark = false

2. Child node u of v is cut and added to root list
v.mark := true

3. Second child of v is cut

node v is cut as well and moved to root list
v.mark = false

The boolean value v. mark indicates whether node v has lost a
child since the last time v was made the child of another node.

Algorithm Theory Fabian Kuhn 30

Potential Function

UNI
FREIBURG

System state characterized by two parameters:
* R:number of trees (length of H.rootlist)

—

* M: number of marked nodes (not in the root list)

Potential function:

[
® =R+ 2M

Example:

|

(NS
\Z
)
|

p—
p—

e R=7,M
—_—— \
Algorithm Theory Fabian Kuhn 31

Actual Time of Operations

UNI

FREIBURG

* Operations: initialize-heap, is-empty, insert, get-min, merge

actual time: 0(1) o

— Normalize unit time such that

Linit) tis—empty: Linserts tget—miru tmerge =

—
—

* Operation delete-min:
— Actual time: 0(@gth of H.rootlist + D(n))

— Normalize unit time such that
tael—min < D(n) + length of H.rootlist

* Operation descrease-key:
— Actual time: O(length of path to next unmarked ancestor)

— Normalize unit time such that

taecr—key < length of path to next unmarked ancestor

Algorithm Theory Fabian Kuhn

32

Amortized Times

UNI

FREIBURG

Assume operation i is of type:

* initialize-heap:
— actualtime: t; < 1, potential: ®;_; = ®; =0
— amortized time: a; = t; + ¢; —P;_1 <1

* is-empty, get-min:
— actual time: t; < 1, potential: ®; = ®;_; (heap doesn’t change)
— amortized time: a; = t; + ¢; —P;_; <1

°* merge:
— Actual time: t; <1
— combined potential of both heaps: ®; = ;4
— amortized time: q; = t; + ®; —P;_; <1

Algorithm Theory Fabian Kuhn

33

Amortized Time of Insert

UNI

FREIBURG

Assume that operation i is an insert operation:

 Actualtime:¢; <1

e ——

 Potential function:

— M remains unchanged (no nodes are marked or unmarked, no marked
nodes are moved to the root list)

— R grows by 1 (one element is added to the root list)

Mi — Mi—l) Ri\zRi—l +1
(,Di\: CI)i—l +1 -

e Amortized time:

ai=t,-+<I>,-—<Di_1S2

= —_—

Algorithm Theory Fabian Kuhn 34

Amortized Time of Delete-Min

UNI
f

FREIBURG

Assume that operation i is a delete-min operation:

K\R

Actual time: ¢; < D(n) + |H.rootlist]|

Potential function ® = R + 2M:
* R:changes from |H.rootlist| to at most D(n)+1

* M: (# of marked nodes that are not in the root list)

— Number of marks does not increase

M; = M;_4, Ri <Ri_1+D() +1—|H.rootlist]|

b, <P, + D(n) + 1 — |H.rootlist]|

—_— — ,— — —

‘b’ = QaM; ¢ Q;_“"z“... FDWN+H - [H.atbsH

Amortized Time:

a;, = ti+q;i_q)i—1 < ZD(n) + 1

Algorithm Theory

7
D+ M) &+ Drary =\

Fabian Kuhn

35

Amortized Time of Decrease-Key

UNI
FREIBURG

Assume that operation i is a decrease-key operation at node u:

Actual time: ¢; < length of path to next unmarked ancestor v

Potential function ® = R + 2M: (bi - O, RN R A CTDERE

* Assume, node u and nodes uq, ..., U, are moved to root list

— U4, ..., U are marked and moved to root list, v. mark is set to true

/' new mark marks root list

/ Uk Removed marks: Added to root list:
,ukx Uq, ..., U u,uq,..,U
ety 1 k 1 k

mark removed (and u, if u is marked)

/ Ri — Ri—l = k + 1
! Added mark: v

M;—M;_{ <—(k—1)

S

Algorithm Theory Fabian Kuhn 36

Amortized Time of Decrease-Key

UNI
FREIBURG

Assume that operation i is a decrease-key operation at node u:
Actual time: ¢; < length of path to next unmarked ancestor v

Potential function ® = R 4+ 2M:
* Assume, node u and nodes uq, ..., U, are moved to root list

— U4, ..., U are marked and moved to root list, v. mark is set to true

> k marked nodes go to root list, < 1 node gets newly marked
* Rgrowsby<k+ 1, M grows by 1 and is decreased by = k

RiSRi_1+k+1, Ml'SMl'_1+1_k

————

O, <P+ (k+1D)—2(k-1) =D, +3—k

Amortized time:
ai:ti‘l‘q)i—q)i_lgk‘l‘l‘l‘g—k:‘l-

—

Algorithm Theory Fabian Kuhn 37

Complexities Fibonacci Heap

UNI
f

FREIBURG

* Initialize-Heap: 0(1)

* Is-Empty: 0(1)
* Insert: 0(1)
* Get-Min: 0(1)

* Delete-Min: 0(D(n)) .
(> amortized

* Decrease-Key: 0(1)

* Merge (heaps of sizemandn, m < n): 0(1)

* How large can D(n) get?
—

Algorithm Theory Fabian Kuhn

38

UNI

Rank of Children

FREIBURG

Lemma:

Consider a node v of rank k and let u4, ..., u; be the children of v in
the order in which they were linked to v. Then,

rank(u;) > i— 2.

Proof:
When u; is added, v already Each node can lose
has children Uq, oo, Uj_1: at most one child:

= rank(u;) =i — 1 when = rank(u;) =i — 2 as long
u; is linked to v. as u; is linked to v.

Algorithm Theory Fabian Kuhn 39

Size of Trees

UNI
f

FREIBURG

Fibonacci Numbers:
F, =0, F, =

——

Lemma:

In a Fibonacci heap, the size of the sub-tree of a node v with

rank k is at least Fj, .

Proof:

1,

Vk > Z:Fk - Fk—Z + Fk—l

N

N —
Sk‘a _“241

* Sk:minimum size of the sub-tree of a node of rank k

Algorithm Theory

Fabian Kuhn

40

Size of Trees

UNI
FREIBURG

k-2

So =1, S =2, Vk22:5k22+zi
i=0
Claim about Fibonacci numbers:
k
VkZO:Fk+2=1+ZFi (F():O,F]_:l)
——1=0_
Proof of claim (by induction on k): 0
 Base case (k = 0): F2=1+2Fi=1+F0=1
i=0

* Induction step (k > 0):

Fiyz = Fie + Fieyq

o~

k-1
I.H.: Fk+1 — 1 + z Fl
e i=0

Algorithm Theory 41

Size of Trees _

UNI
FREIBURG

k-2 k
So=1,8, =2,Vk > 2:5, > 2+25i, Fipy = 1+2Fi

Claim of lemma: S, = Fj. .,

E—

Proof by induction on k:
* Basecase(k=0,k=1): So=F,=1 S =2F;=2

* Induction step (k > 1):

k-2 k-2
SE24Y 5324 24 I+ F <R
i=0 i= j=2 j=0
I.H. j=1i+2 Fo=0,F; =1|| previous claim
on Fibonacci
numbers

Algorithm Theory Fabian Kuhn 42

Size of Trees

UNI
FREIBURG

Lemma:
In a Fibonacci heap, the size of the sub-tree of a node v with rank k
is at least Fy, 5.

Theorem:
The maximum rank of a node in a Fibonacci heap of size n is at most

D(n) = O(logn).

Proof:
* The Fibonacci numbers grow exponentially:

1 (/1445 [1-v5)\"
w7 ()

T — . —

 ForD(n) = k, we needn = F;,, nodes.
R N
<~ '¥x

Algorithm Theory Fabian Kuhn 43

Binary Heaps & Fibonacci Heaps

UNI
FREIBURG

initialize
insert
get-min
delete-min
decrease-key

is-empty

Algorithm Theory

Binary Heap

0(1)
O(logn)
0(1)
O(logn)
O(log n)
0(1)

Fabian Kuhn

Fibonacci Heap

0(1)
0o(1) =
0(1)

O(logn) * <
O(1)* <«—
0(1)

Xk . o
amortized time

44

