

Algorithm Theory

Chapter 6 Graph Algorithms

Maximum Flow: Ford Fulkerson Algorithm

Fabian Kuhn

Graphs

Extremely important concept in computer science

Graph $G = (V, E)$

- \bullet $V:$ node (or vertex) set
- $E \subseteq V^2$: edge set

- undirected graph: we often think of edges as sets of size 2 (e.g., $\{u, v\}$)
- directed graph (digraph): edges are sometimes also called arcs
- simple graph: no self-loops, no multiple edges
- weighted graph: (positive) weight on edges (or nodes)
- (simple) path: sequence v_0 , ..., v_k of nodes such that $v_i, v_{i+1}) \in E$ for all $i \in \{0, ..., k-1\}$

Many real-world problems can be formulated as optimization problems on graphs.

• …

Graph Optimization: Examples

Minimum spanning tree (MST):

• Compute min. weight spanning tree of a weighted undir. Graph

Shortest paths:

• Compute (length) of shortest paths (single source, all pairs, …)

Traveling salesperson (TSP):

• Compute shortest TSP path/tour in weighted graph

Vertex coloring:

- Color the nodes such that neighbors get different colors
- Goal: minimize the number of colors

Maximum matching:

- Matching: set of pair-wise non-adjacent edges
- Goal: maximize the size of the matching

Algorithm Theory **Fabian Kuhn** 5 and 3 and

Network Flow

Flow Network:

- Directed graph $G = (V, E)$, $E \subseteq V^2$
- Each (directed) edge *e* has a capacity $c_e \geq 0$
	- Amount of flow (traffic) that the edge can carry
- A single source node $s \in V$ and a single sink node $t \in V$
	- $-$ Source *s* has only outgoing edges, sink t has only incoming edges

Flow: (informally)

• Traffic from s to t such that each edge carries at most its capacity

Examples:

- Highway system: edges are highways, flow is the traffic
- Computer network: edges are network links, flow is data
- Fluid network: edges are pipes that carry liquid

Algorithm Theory **Algorithm Theory Fabian Kuhn 5** Fabian Kuhn **4**

Example: Flow Network

Network Flow: Definition

Flow conservation: $\forall v \in V \setminus \{s, t\}$: $f^{\text{in}}(v) = f^{\text{out}}(v)$

Flow value: $|f| = f^{\text{out}}(s) = f^{\text{in}}(t)$

For simplicity: Assume that all capacities are positive integers

Algorithm Theory **Fabian Kuhn** Fabian Kuhn 7

Maximum Flow:

Given a flow network, find a flow of maximum possible value

- Classic graph optimization problem
- Many applications (also beyond the obvious ones)
- Requires new algorithmic techniques

Maximum Flow: Greedy?

Does greedy work?

A natural greedy algorithm:

• As long as possible, find an $s-t$ -path with free capacity and add as much flow as possible to the path

Improving the Greedy Solution

- Try to push 10 units of flow on edge (s, v)
- Too much incoming flow at v : reduce flow on edge (u, v)
- Add that flow on edge (u,t)

Residual Graph

Given a flow network $G = (V, E)$ with capacities c_e (for $e \in E$)

For a flow f on G, define directed graph $G_f = (V_f, E_f)$ as follows:

- Node set $V_f = V$
- For each edge $e = (u, v)$ in E, there are two edges in E_f :
	- forward edge $e = (u, v)$ with residual capacity $c_e f(e)$

 $-$ backward edge $e' = (v, u)$ with residual capacity $f(e)$

Residual Graph: Example

Residual Graph: Example

Flow

Residual Graph

Augmenting Path

Residual Graph

Augmenting Path

Augmenting Path

New Flow

Definition:

An augmenting path P is a (simple) s -t-path on the residual graph G_f on which each edge has residual capacity > 0 .

bottleneck(P , f): minimum residual capacity on any edge of the augmenting path P

Augment flow f to get flow f' :

• For every forward edge (u, v) on P:

 $f' \bigl((u,v) \bigr) \coloneqq f \bigl((u,v) \bigr) + \texttt{bottleneck}(P,f)$

• For every backward edge (u, v) on P :

 $f'((v, u)) \coloneqq f((v, u)) - \text{bottleneck}(P, f)$

Augmented Flow

Lemma: Given a flow f and an augmenting path P , the resulting augmented flow f' is legal and its value is

 $f' = |f| + \text{bottleneck}(P, f).$

Proof:

Ford-Fulkerson Algorithm

- Improve flow using an augmenting path as long as possible:
- 1. Initially, $f(e) = 0$ for all edges $e \in E$, $G_f = G$
- 2. **while** there is an augmenting s -t-path P in G_f do
- 3. Let P be an augmenting s-t-path in G_f ;
- 4. $f' \coloneqq \text{augment}(f, P);$
- 5. update f to be f' ;
- 6. update the residual graph G_f
- 7. **end**;

Ford-Fulkerson Running Time

Theorem: If all edge *capacities* are *integers*, the Ford-Fulkerson algorithm terminates after at most C iterations, where

$$
C = \text{``max flow value''} \leq \sum_{e \text{ out of } s} c_e.
$$

Proof:

- 1. At all times, for all $e \in E$, $f(e)$ is an integer
	- Initially: $f(e) \equiv 0$
	- In one iteration:
		- augmenting path P : all residual capacities are integers
		- bottleneck $(P, f) > 0$ and also bottleneck (P, f) is an integer
		- $f'(e) = f(e)$ or $f'(e) = f(e) \pm \text{bottleneck}(P, f)$
- 2. New flow value $|f'| = |f| + \text{bottleneck}(P, f) \ge |f| + 1$ \Rightarrow #iterations $\leq C$

Algorithm Theory **Eabian Kuhn** Fabian Kuhn 21

Ford-Fulkerson Running Time

 $m:$ #edges

Theorem: If all edge *capacities* are *integers*, the Ford-Fulkerson algorithm can be implemented to run in $O(mC)$ time.

Proof:

Show that each of the $\leq C$ iterations requires $O(m)$ time.

- 1. Compute / update residual graph: $1st$ iteration: $O(m)$ Later iterations: $O(n)$
- 2. Find augmenting path / conclude that no augm. path exists find positive s -t path in residual graph G_f

 \Rightarrow Graph traversal: using DFS or BFS: $O(m)$

3. Update flow values: $O(n)$

 $O(m+n)$

s-t Cuts

Definition:

An s-t cut is a partition (A, B) of the vertex set such that $s \in A$ and $t \in B$

Cut Capacity

Definition:

The capacity $c(A, B)$ of an s-t-cut (A, B) is defined as

Cuts and Flow Value

Lemma: Let f be any s -t flow, and (A, B) any s -t cut. Then,

Proof:

 f | = $f^{\text{out}}(s)$, \qquad = $f^{\text{in}}(t)$ f | = $f^{\text{out}}(s) - f^{\text{in}}(s)$ ϵ - $\frac{1}{\sqrt{1-\frac{1}{n}}}$ $=$ $\left\langle \right\rangle$ $v \in A$ $f^{\mathrm{out}}(\mathbf{\nu})-f^{\mathrm{in}}(\mathbf{\nu}%)\mathbf{1}_{\mathrm{in}}\times\mathbf{I}$ $= 0$, except for $v = s$

$$
= f^{\text{out}}(A) - f^{\text{in}}(A)
$$

 f = $f^{\text{out}}(A) - f^{\text{in}}(A)$.

Cuts and Flow Value

疆

Lemma: Let f be any s -t flow, and (A, B) any s -t cut. Then, f = $f^{\text{out}}(A) - f^{\text{in}}(A)$. **Lemma:** Let f be any s -t flow, and (A, B) any s -t cut. Then, f | = $f^{\text{in}}(B) - f^{\text{out}}(B)$

Proof:

- Either do the same argument as before, symmetrically
- Or, use that $f^{\text{out}}(A) = f^{\text{in}}(B)$ and $f^{\text{in}}(A) = f^{\text{out}}(B)$

Upper Bound on Flow Value

Lemma:

Let f be any s-t flow and (A, B) any s-t cut. Then $|f| \le c(A, B)$.

Proof:

$$
f^{\text{out}}(A) \leq \underline{c(A, B)}
$$

$$
f^{\text{out}}(A) \leq \underline{c(A, B)}
$$

$$
f^{\text{in}}(A) \geq 0
$$

$$
f^{\text{in}}(A) \geq 0
$$

$$
\begin{pmatrix} S & A \\ S & A \end{pmatrix} \neq f^{\text{in}}(A)
$$

UNI
Freiburg

Ford-Fulkerson Gives Optimal Solution

Lemma: If f is an s -t flow such that there is no augmenting path in G_f , then there is an s-t cut (A^*,B^*) in G for which $|\int_{1}^{x}|\leq c(A^{*},B^{*})$ f = $c(A^*, B^*)$. ە⊨⊁ **Proof:**

• Define A^* : set of nodes that can be reached from s on a path with positive residual capacities in G_f :

- For $B^* = V \setminus A^*$, (A^*, B^*) is an s-t cut
	- − By definition $s \in A^*$ and $t \notin A^*$

Ford-Fulkerson Gives Optimal Solution

Lemma: If f is an s-t flow such that there is no augmenting path in G_f , then there is an s-t cut (A^*,B^*) in G for which

 f = $c(A^*, B^*)$.

Algorithm Theory Fabian Kuhn 29

Ford-Fulkerson Gives Optimal Solution

Theorem: The flow returned by the Ford-Fulkerson algorithm is a maximum flow.

Proof:

• Ford-Fulkerson algorithm gives a flow f^* and a cut (A^*, B^*)

s. t.
$$
|f^*| = c(A^*, B^*).
$$

• We saw that $|f| \le c(A, B)$ for every valid flow f and every s -t cut (A, B) .

And thus in particular also $|f| \le c(A^*, B^*)$.

Ford-Fulkerson also gives a minimum s - t cut algorithm:

Theorem: Given a flow f of maximum value, we can compute an s-t cut of minimum capacity in $O(m)$ time.

Proof:

- f maximum \implies no augmenting path
- We can therefore construct cut (A^*,B^*) as before
	- By using DFS/BFS on the positive res. cap. edges of G_f in time $O(m)$.
- (A^*, B^*) is a cut of minimum capacity:
	- For every other s -t cut (A, B) , we know that $|f| \leq c(A, B)$
	- Because $|f| = c(A^*, B^*)$, we therefore have

 $c(A^*, B^*) \leq c(A, B)$.

Max-Flow Min-Cut Theorem

Theorem: (Max-Flow Min-Cut Theorem)

In every flow network, the maximum value of an s -t flow is equal to the minimum capacity of an s -t cut.

Proof:

• Ford-Fulkerson gives a maximum flow f^* and a minimum cut (A^*,B^*) s.t.

 f^* = $c(A^*, B^*)$.

Theorem: (Integer-Valued Flows)

If all capacities in the flow network are integers, then there is a maximum flow f for which the flow $f(e)$ of every edge e is an integer.

Proof:

- If all the capacities are integers, the Ford-Fulkerson algorithm gives an integer solution.
	- By induction on the steps of the algorithm, all flow values are always integers and all residual capacities of G_f are always integers.

Non-Integer Capacities

If a given flow network has integer capacities, the Ford-Fulkerson algorithm computes a maximum flow of value C in time $O(m \cdot C)$.

What if capacities are not integers?

- rational capacities:
	- can be turned into integers by multiplying them with large enough integer
	- algorithm still works correctly
- real (non-rational) capacities:
	- not clear whether the algorithm always terminates
- even for integer capacities, time can linearly depend on the value of the maximum flow

Slow Execution

• Number of iterations: 2000 (value of max. flow)

Improved Algorithm

Idea: Find the best augmenting path in each step

- best: path P with maximum bottleneck (P, f)
- Best path might be rather expensive to find \rightarrow find almost best path
- **Scaling parameter :** (initially, $\underline{\Delta}$ = "max $c_{\underline{e}}$ rounded down to next power of 2")
- As long as there is an augmenting path that improves the flow by at least Δ , augment using such a path

mar Ce

• If there is no such path: $\Delta \coloneqq \frac{\Delta}{2}$

Scaling Parameter Analysis

Lemma: If all capacities are integers, number of different scaling parameters used is $\leq 1 + |\log_2 c_{\max}|$. $c_{\text{max}} \coloneqq \max$ c_e

 \boldsymbol{e}

 $2^{\lfloor \log_2 c_{max} \rfloor}$

At the beginning: $\Delta = \underline{2^{\lfloor \log_2 c_{\max} \rfloor}}$ At the end: $\Delta = 1$

different scaling parameters Δ : $\lfloor \log_2 c_{\max} \rfloor + 1$

Δ-scaling phase: Time during which scaling parameter is Δ

Length of a Scaling Phase

Lemma: If f is the flow at the end of the Δ -scaling phase, the maximum flow in the network has value less than $|f| + m\Delta$. **Proof:**

• Define A : set of nodes that can be reached from s on a path with residual capacities $\geq \Delta$ in G_f . m_1 edges

$$
|f| = f^{\text{out}}(\overline{A}) - f^{\text{in}}(\overline{A}) > c(\overline{A}, \overline{B}) - m_1 \Delta - m_2 \Delta \ge c(\overline{A}, \overline{B}) - m_1 \Delta
$$

Length of a Scaling Phase

Lemma: The number of augmentation in each scaling phase is less than $2m$.

Proof:

- At the end of the 2Δ -scaling phase: $|f^*| < |f| + 2m\Delta$
- Each augmentation in the Δ -scaling phase improves the value of the flow f by at least Δ .
- #augmentations in Δ -scaling phase $\leq 2m$.

Running Time: Scaling Max Flow Alg.

Theorem: The number of augmentations of the algorithm with scaling parameter and integer capacities is at most $O(m \log c_{\max})$. The algorithm can be implemented in time $O(\underline{m}^2\log c_{\max}).$

Proof:

-
- #iterations per scaling phase: $O(m) \leftarrow$
- time per iteration: $O(m)$ \leftarrow

#scaling phases: $O(\log c_{\max})$

Strongly Polynomial Algorithm

• Time of regular Ford-Fulkerson algorithm with integer capacities:

• Time of algorithm with scaling parameter:

• $O(\log c_{\max})$ is polynomial in the size of the input, but not in n

 $O(m^2 \log c_{\max})$

- Can we get an algorithm that runs in time polynomial in n ?
- **Edmonds-Karp Alg.:** Always picking a shortest augmenting path:

 $O(\underline{m^2n})$

– We will show this next.

- Define G^+_f as the subgraph of G_f with only the edges with positive residual capacity.
	- $-$ augmenting path $=$ any s-t path in G_f^+
- Level $\ell(v)$ of node v : length (# of edges) of shortest path from s to ν in G_f^+ .

$$
\ell(s) = 0
$$
\n
$$
\ell(v) = 1
$$
\n
$$
\ell(v) = 2
$$
\n
$$
\ell(v) = 3
$$
\n
$$
\ell(v) = d - 1
$$
\

UNI
FREIBURG

Lemma 1: For every node v , the level $\ell(v)$ is non-decreasing. **Proof:**

• Consider augmentation along one augmenting path

$$
\ell(s) = 0 \quad \ell(v_1) = 1 \quad \ell(v_2) = 2 \quad \ell(v_3) = 3 \quad \ell(v_4) = 4 \quad \ell(v_5) = 5 \qquad \qquad \ell(t) = d
$$
\n
$$
\text{S} \longrightarrow \text{V}_1 \longrightarrow \text{V}_2 \longrightarrow \text{V}_3 \longrightarrow \text{V}_4 \longrightarrow \text{V}_5 \longrightarrow \text{V}_6 \longrightarrow \text{V}_7 \longrightarrow \text{V}_8 \longrightarrow \text{V}_9 \longrightarrow \text{V}_9
$$

- Before augmentation, edges are between consecutive levels
- The set of edges of G_f^+ only changes if the residual capacity of some edge changes: \overline{e}

- If e is on augmenting path P and $c_e =$ bottleneck(P, f), after augmentation, $c_e = 0$ and e is removed from G_f^+
- The residual cap. of the edge e' in the opposite direction could increase from 0 to >0 and be added to G^+_f

Lemma 1: For every node v , the level $\ell(v)$ is non-decreasing. **Proof:**

Consider augmentation along one augmenting path

$$
\ell(s) = 0 \quad \ell(v_1) = 1 \quad \ell(v_2) = 2 \quad \ell(v_3) = 3 \quad \ell(v_4) = 4 \quad \ell(v_5) = 5 \qquad \qquad \ell(t) = d
$$
\n
$$
(S) \qquad (V_1) \qquad (V_2) \qquad (V_3) \qquad (V_4) \qquad (V_5) \qquad (V_6) \qquad (V_7) \qquad (V_8) \qquad (V_9) \qquad (V_9) \qquad (V_9) \qquad (V_1) \qquad (V_1) \qquad (V_2) \qquad (V_3) \qquad (V_4) \qquad (V_4) \qquad (V_5) \qquad (V_6) \qquad (V_7) \qquad (V_8) \qquad (V_9) \q
$$

- $-$ Before augmentation, edges are between consecutive levels
- A shortest augmenting path consists of exactly one node of each level.
- $-$ The only new edges are from level $i + 1$ to level i for some $i \geq 0$. (for the levels before augmenting along the path)

- $-$ Such edges cannot create shortcuts to create s -w paths of length $\lt \ell(w)$
- Levels of all nodes are non-decreasing.

Lemma 2: There are at most $O(m \cdot n)$ augmentation steps. **Proof:**

- In each augmentation step, at least one edge (u, v) is deleted from G^{+}_{f}
	- Some edge $e = (u, v)$ on the augmenting path P has c_e = bottleneck(P, f)
	- $-$ The residual capacity of e is set to 0 and e is removed from G_f^+
- $\ell_{(v)}$ = $\overline{\ell}(v)$ = $\overline{\ell}(v)$ • When (u, v) is deleted from G^+_f , for some $i \geq 0$: $\ell(u) = i$, $\ell(v) = i + 1$ $\overline{\mathbf{u}}$
- If (u, v) is later added back to G_f^+ , for some $j \geq 0$: $l(u) = j + 1,$ $l(v) = i$ u
- Because level $\ell(v)$ is non-decreasing: $j \geq i + 1$ \Rightarrow When (u, v) is added back, $\ell(u) \geq i + 2$
- Because the maximum possible level is $n-1$, each edge is deleted from G^+_f at most $O(n)$ times.

Algorithm Theory **Algorithm Theory Fabian Kuhn** Fabian Kuhn **45**

Theorem: The Edmonds-Karp algorithm computes a maximum flow in time $O(m^2n)$ even with arbitrary non-negative capacity values.

• *Edmonds-Karp algorithm* = *Ford-Fulkerson algorithm, where we choose a shortest augmenting path in each step.*

Proof:

- From lemma before: $O(m \cdot n)$ augmentation steps
- A shortest augmenting path can be found in time $O(m + n)$ by using a BFS traversal on the positive residual graph G_f^+ .

Other Algorithms

- There are many other algorithms to solve the maximum flow problem, for example:
- **Preflow-push algorithm:** [Goldberg,Tarjan 1986]
	- Maintains a preflow (∀ nodes: inflow ≥ outflow)
	- Alg. guarantees: As soon as we have a flow, it is optimal
	- Detailed discussion in 2012/13 lecture
	- $-$ Running time of basic algorithm: $O(m \cdot n^2)$
	- $-$ Doing steps in the "right" order: $O(n^3)$
- \mathcal{L} Current best known complexity: $\boldsymbol{O}(m \cdot \boldsymbol{n})$
	- $-$ For graphs with $m \geq n^{1+\epsilon}$ [King,Rao,Tarjan 1992/1994] (for every constant $\epsilon > 0$)
	- $-$ For sparse graphs with $m \leq n^{16/15-\delta}$

• Best known since 2022: $\bm{O}\big(\bm{m}\cdot\bm{n^{o(1)}}\big)$

- Uses a continuous optimization approach
- Published by Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, Sushant Sachdeva

[Orlin, 2013]

