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Extremely important concept in computer science

Graph G = (V,E)
 I:node (or vertex) set

« E CV?: edge set
— undirected graph: we often think of edges as sets of size 2 (e.g., _{_Ti,_v})

Q=

—_—

— directed graph (digraph): edges are sometimes also called arcs
— simple graph: no self-loops, no multiple edges
— weighted graph: (positive) weight on edges (or nodes)
. _(imple) path: sequence vy, ..., Uy of nodes such that
(v;,v;41) € Eforalli € {0, ...,k — 1}

Many real-world problems can be formulated as
optimization problems on graphs.
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Graph Optimization: Examples
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Minimum spanning tree (MST):
 Compute min. weight spanning tree of a weighted undir. Graph

Shortest paths:
 Compute (length) of shortest paths (single source, all pairs, ...)

Traveling salesperson (TSP):
 Compute shortest TSP path/tour in weighted graph

Vertex coloring:
* Color the nodes such that neighbors get different colors

e Goal: minimize the number of colors

Maximum matching:
* Matching: set of pair-wise non-adjacent edges

* Goal: maximize the size of the matching
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Network Flow
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Flow Network: 0o

» Directed graph G = (V,E),EcV? S—"
* Each (directed) edge e has a capacity ¢, = 0

— Amount of flow (traffic) that the edge can carry

* Asingle source node s € IV and a single sink node t € V

_—

— Source s has only outgoing edges, sink t has only incoming edges

Flow: (informally)
* Traffic from s to t such that each edge carries at most its capacity

Examples:

* Highway system: edges are highways, flow is the traffic
 Computer network: edges are network links, flow is data
* Fluid network: edges are pipes that carry liquid
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Example: Flow Network
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Network Flow: Definition

Flow: function f: E = R, ,g(é);o ‘ﬁ_@o
* f(e)isthe amount of flow carriedbyedgee & < fi>< 0

e

Capacity Constraints:

* Foreachedgee €E, f(e) <c, #’ﬁ
) =
S
Flow Conservation: 5
A%

 Foreachnodev eV \ {S t},

Y fe= ) f@

e intov e out of v

Flow Value:

fl= > flew)= > f(@o)

= e outof s eintot
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Notation %AX”
/" 15 ~
=

2 >

We define:
frwy= Y fl@, U= ) fle)

e intov e out of v

———

ForasetACV:

f“:A) = Z f(e), [j‘&‘l) = 2 fe)

einto A e out of S

Flow conservation: Vv € V \ {s,t}: f(v) = f°"(v)

Flow value: || = f°Ut(s) = fI"(t)

For simplicity: Assume that all capacities are positive integers
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The Maximum-Flow Problem
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Maximum Flow:

Given a flow network, find a flow of maximum possible value

* Classic graph optimization problem

 Many applications (also beyond the obvious ones)

* Requires new algorithmic techniques
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Maximum Flow: Greedy?
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Does greedy work?

A natural greedy algorithm:

* Aslong as possible, find an s-t-path with free capacity and
add as much flow as possible to the path
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Improving the Greedy Solution

* Try to push 10 units of flow on edge (s, v)
* Too much incoming flow at v: reduce flow on edge (u, v)
e Add that flow on edge (u, t)
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Residual Graph

Given a flow network G = (V, E') with capacities c, (for e € E)

For a flow f on G, define directed graph G = (Vf, Er) as follows:
* NodesetV, =V -~
* Foreachedgee = (u,v) in E, there are two edges in Ef:

— forward edge e = (u, v) with residual capacity ¢, —=]Le)

— backward edge e’ = (v, u) with residual capacity f (e)
= 30

- o
forward edge e : c, = 10 —
_— \0o °
c, = 30 0
Uu )
S f@=20 - Y
backward edge e’ : ¢,, = 20 2
)
—
a‘(;"a/—r
(&)
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Residual Graph: Example
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Residual Graph: Example
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Flow f
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Residual Graph: Example
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Residual Graph G
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Augmenting Path

UNI

FREIBURG

Residual Graph G
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Augmenting Path

Augmenting Path
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Augmenting Path
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New Flow
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Definition:
An augmenting path P is a (simple) s-t-path on the residual
graph G¢ on which each edge has residual capacity > 0.

bottleneck(P, f): minimum residual capacity on any edge of the
~ augmenting path P

Augment flow f to get flow f':
* For every forward edge (u, v) on P:

f'((w,v)) = f((u,v)) + bottleneck(P, f)
* For every backward edge (u,v) on P:

f’(gfit)) = f((ﬂ_l)—)— bottleneck(P, f)
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Augmented Flow

Lemma: Given a flow f and an augmenting path P, the resulting
augmented flow f’ is legal and its value is
If'| = |f| + bottleneck(P, f).

Proof:
2 forward edges 2 backward edges
_|_ —_
}@/y 77@/
forward & backward edge flow value increases

7@7/@;/
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Ford-Fulkerson Algorithm
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* Improve flow using an augmenting path as long as possible:

1. Initially, f(e) = Oforalledgese € E, Gr = G

while there is an augmenting s-t-path P in Gr do

2.

3 Let_Iibe an augmenting s-t-path in Gg;
4, f' == augment(f, P);

5 update f to be f;

6 update the resﬁjal graph Gr

7. end; a
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Ford-Fulkerson Running Time
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Theorem: If all edge capacities are integers, the Ford-Fulkerson
algorithm terminates after at most C iterations, where

C = "max flow value" < z Co .

-

e out of s
Proof:

1. Atalltimes, foralle € E, f(e) is an integer

 Initially: f(e) =0

* |Inone iteration:
 augmenting path P: all residual capacities are integers
* Dbottleneck(P, f) > 0 and also bottleneck(P, f) is an integer

. f/(e) — f(e) or f’(e) = f(e) i bottleneck(P, f)

2. New flow value |f'| = |f| + bottleneck(P, f) = |f]| + 1

— #Hiterations < C
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Ford-Fulkerson Running Time
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Theorem: If all edge capacities are integers, the Ford-Fulkerson
algorithm can be implemented to run in O (mcC) time.

m: #edges

Proof:
Show that each of the < C iterations requires O(m) time.

__~ 1*iteration: O(m)
T Later iterations: O(n)

2. Find augmenting path / conclude that no augm. path exists
. e

1. Compute / update residual graph:

find positive s-t path in residual graph G¢

= Graph traversal: using DFS or BFS: O (m)

~/
3. Update flow values: 0(n) Owa +w)

——
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s-t Cuts
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Definition:
An s-t cut is a partition (4, B) of the vertex set such thats € A4

andt € B
@ 20
A » 20 Q

15 0 o 15 B

© 5 0

& =g

15
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Cut Capacity

Definition:
The capacity c(A4, B) of an s-t-cut (4, B) is defined as

c(4,B) = z Ce.
@ 20 eoutof A
20
A u (v)

Y k) () (DB
s, = t

10

15
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Cuts and Flow Value
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Lemma: Let f be any s-t flow, and (4, B) any s-t cut. Then,

f] = foU(4) — f"(A).
>

Proof:
U1 = 7o),
fl= £OU5Gs) =

(=f®)

fin(s)

=) (r @ - )

VEA

— =0,exceptforv=s

= fOU(A) = £1(4)

Algorithm Theory
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Cuts and Flow Value

Lemma: Let f be any s-t flow, and (4, B) any s-t cut. Then,
IfI = foU(A) — F(A).
Lemma: Let f be any s-t flow, and (4, B) any s-t cut. Then,

fl = f™(B) — fo"*(B).

Proof:
* Either do the same argument as before, symmetrically

e Or, use that f°"*(4) = f(B) and fI"(4) = f°"Y(B)

- —_—

FOUL(A) = fN(B)

Fin4) = fOU(B)
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Upper Bound on Flow Value

Lemma:
Let f be any s-t flow and (4, B) any s-t cut. Then |f| < c(4, B).

Proof:

If] = fout(4) — fin(4) < c(4,B)

£ (4) <c(A B)

—

Fin(4) 2 0
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Ford-Fulkerson Gives Optimal Solution .
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Lemma: If f is an s-t flow such that there is no augmenting path

in Gy, t?enﬁhere is an s-t cut (A%, B¥) in G for which

S L T =@, B, 1) < (AT )

Proof: *° B

* Define A”: set of nodes that can be reached from s on a path
with positive residual capacities in G¢:

Residual capacity = 0
* ForB* =V \ A", (A%, B") isan s-t cut
— By definitions € A"andt & A"
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Ford-Fulkerson Gives Optimal Solution .
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Lemma: If f is an s-t flow such that there is no augmenting path
in G, then there is an s-t cut (A%, B") in G for which

fl = c(4%, BY).
Proof:
A” B*
f(e) = c. Edge e from % x D
" A"toB’inG foUH(AT) = c(A", BY)
ce =0  Forward edge ’

eint

fle)=0 Edge e from
B*to A" inG fin(A*)

o

I

<o/

I |l
)

e Backward edge
e’ in G¢
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Ford-Fulkerson Gives Optimal Solution
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Theorem: The flow returned by the Ford-Fulkerson algorithm is a
maximum flow.

Proof:

 Ford-Fulkerson algorithm gives a flow f* and a cut (4", B¥)

s.t. |f*| = c(A*, BY).

* We saw that |f| < c(4, B) for every valid flow f
and every s-t cut (4, B).
— And thus in particular also |f| < c(4*, B*).
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Min-Cut Algorithm

Ford-Fulkerson also gives a minimum s-t cut algorithm:

———

Theorem: Given a flow f of maximum value, we can compute an
s-t cut of minimum capacity in O(m) time.

-

Proof:
* f maximum = no augmenting path

* We can therefore construct cut (4%, B*) as before
— By using DFS/BFS on the positive res. cap. edges of G in time O(m).

(A%, B*)is acut of minimum capacity:
— For every other s-t cut (4, B), we know that |f| < c(4, B)
_— i —
— Because |f| = c(A%, B*), we therefore have

c(4*,B") < c(4,B).
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Max-Flow Min-Cut Theorem

Theorem: (Max-Flow Min-Cut Theorem)

In every flow network, the maximum value of an s-t flow is
equal to the minimum capacity of an s-t cut. o

Proof:

* Ford-Fulkerson gives a maximum flow f~
and a minimum cut (4%, B") s.t.

[f*] = c(A%, BY).

Algorithm Theory Fabian Kuhn

UNI
f

FREIBURG



Integer Capacities
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Theorem: (Integer-Valued Flows)

If all capacities in the flow network are integers, then there is a

maximum flow f for which the floww of every edge e is an
integer.

Proof:

* If all the capacities are integers, the Ford-Fulkerson algorithm
gives an integer solution.

— By induction on the steps of the algorithm, all flow values are always
integers and all residual capacities of G are always integers.
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If a given flow network has integer capacities, the Ford-Fulkerson
algorithm computes a maximum flow of value C in time O(m - C).

L

What if capacities are not integers?

* rational capacities:
— can be turned into integers by multiplying them with large enough integer

— algorithm still works correctly

* real (non-rational) capacities:

— not clear whether the algorithm always terminates

* even for integer capacities, time can linearly depend on the value
of the maximum flow o
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Slow Execution
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 Number of iterations: 2000 (value of max. flow)

Algorithm Theory
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Improved Algorithm
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Idea: Find the best augmenting path in each step
* best: path P with maximum bottleneck(P, f)

* Best path might be rather expensive to find
- find almost best path

VL | C(
ecl

* Scaling parameter A:
(initially, A = "max c, rounded down to next power of 27)

—a

* Aslong as there is an augmenting path that improves the flow by
at least A, augment using such a path

* If thereis no such path: A := 4/,

—
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Scaling Parameter Analysis =8 <=~

Lemma: If all capacities are integers, number of different scaling
parameters used is < 1 + |log, caxl-
=

’ Cmax = meaX Ce

At the beginning: A = 211982 ‘max|
At the end: A=1

—

# different scaling parameters A: [log, cpax] + 1

* A-scaling phase: Time during which scaling parameter |<A>

running time = #scaling phases' - #fiterations per phase - 0(m)

—_—
—_—

|

0(log cmax) ?2??
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Length of a Scaling Phase 70

: A

LWy O
Lemma: If f is the flow at the end of the A-Whase, the
maximum flow in the network has value less than |f| + mA.
EE——

Proof: o
« Define A: set of nodes that can be reached from s on a path
with residual capacities = Ain Gy. m1 edges

Residual capacity < A

Ifl= fout(z) - fin(z) > C(Z, E) —mA —myA = C(Z, E) — mA
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Length of a Scaling Phase
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Lemma: The number of augmentation in each scaling phase
is less than 2m.

Proof:
* Atthe end of the 2A-scaling phase: || < |f| + 2mA

* Each augmentation in the A-scaling phase improves the value
of the flow f by at least A.

* #augmentations in A-scaling phase < 2m.
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Theorem: The number of augmentations of the algorithm with
scaling parameter and integer capacities is at most O (m log ¢,.%)-
The algorithm can be implemented in time 0(m? 108 ¢yyay)-

Proof:

* f#iscaling phases: O(log cpax) «—
* ftiterations per scaling phase: Oo(m) «—
 time per iteration: O(m) &
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Strongly Polynomial Algorithm
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* Time of regular Ford-Fulkerson algorithm with integer capacities:

E 2

* Time of algorithm with scaling parameter:

0 (m* log cmax) Huocdes
el y J
* O(logcpax) is polynomial in the size of the input, but notinn

 Can we get an algorithm that runs in time polynomial in n?

 Edmonds-Karp Alg.: Always picking a shortest augmenting path:

0(mn)

— also works for arbitrary real-valued weights

— We will show this next.
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Shortest Augmenting Path Algorithm
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 Define G;“ as the subgraph of G with only the edges with positive
residual capacity.

— augmenting path = any s-t path in G;

* Level /(v) of node v:
length (# of edges) of shortest path from s to v in GF.

(s)=0 P(v)=1+¢(v)=2|¢(v) =3 () =d—12() =

—Q

|
NP

S
S
~4
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Shortest Augmenting Path Algorithm

Lemma 1: For every node v, the level £(v) is non-decreasing.

Proof:
* Consider augmentation along one augmenting path

(s) =0 Y(vy)) =1 (v,)=2 Y(v3) =3 f(vy) =4 (vs) =5 P(t) =d

T R R S

— Before augmentation, edges are between consecutive levels

 The set of edges of GF only changes if the residual capacity of some

edge changes: = e

-~
-~
il T -
o

— If e is on augmenting path P and c, = bottleneck(P, f), after
augmentation, ¢, = 0 and e is removed from G]Z*

— The residual cap. of the edge e’ in the opposite direction could increase
from 0 to > 0 and be added to G#
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Shortest Augmenting Path Algorithm

FREIBURG

Lemma 1: For every node v, the level £(v) is non-decreasing.
Proof:
* Consider augmentation along one augmenting path

— A shortest augmenting path censists’of exactly one node of each level.

— The only new edges are from level i + 1 to level i for some i = 0.
(for the levels before augmenting along the path)

~
N
~~~~~
---------

— Such edges cannot create shortcuts to create s-w paths of length < £(w)
— Levels of all nodes are non-decreasing.
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Lemma 2: There are at most O(m - n) augmentation steps.
Proof:

* In each augmentation step, at least one edge (u, v) is deleted from G;’

— Some edge e = (u, v) on the augmenting path P has c, = bottleneck(P, f)
— The residual capacity of e is set to 0 and e is removed from Gf’

: + : b=t Livr =i
 When (u, v) is deleted from G, forsomei =0
Nalld Hf 65— a0
(u) =1, tv)=i+1 “ M
e If (u,v)is later added back to Gfr, for some j = 0: \)2:" = 3 > i+ |
f(u) =j+1, t(v) =j fa=c,

* Because level £(v) is non-decreasing: j =i + 1
= When (u, v) is added back, #(u) =i+ 2

* Because the maximum possible level isn — 1, each edge is deleted
from G at most O(n) times.

e
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Shortest Augmenting Path Algorithm
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Theorem: The Edmonds-Karp algorithm computes a maximum flow in
time O(m?n) even with arbitrary non-negative capacity values.

 FEdmonds-Karp algorithm = Ford-Fulkerson algorithm,
where we choose a shortest augmenting path in each step.

Proof:
* From lemma before: O(m - n) augmentation steps

e A shortest augmenting path can be found in time O(m + n) by using a
BFS traversal on the positive residual graph Gfr.
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Other Algorithms
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 There are many other algorithms to solve the maximum flow
problem, for example:

* Preflow-push algorithm: [Goldberg,Tarjan 1986]
— Maintains a preflow (V nodes: inflow = outflow)
— Alg. guarantees: As soon as we have a flow, it is optimal
— Detailed discussion in 2012/13 lecture
— Running time of basic algorithm: O(m - n?)
— Doing steps in the “right” order: 0(n3)

. @urrent best known complexity: O(m - n)

— For graphs with m > n1*€ [King,Rao,Tarjan 1992/1994]
(for every constant € > 0)

— For sparse graphs with m < n16/15-¢ [Orlin, 2013]
\
 Best known since 2022: O(m - n"(i)) O(W\H om)

— Uses a continuous optimization approach

— Published by Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian
Probst Gutenberg, Sushant Sachdeva
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