
Algorithm Theory

Chapter 6

Graph Algorithms

Maximum Flow: Ford Fulkerson Algorithm

Fabian Kuhn



Algorithm Theory Fabian Kuhn 2

Graphs

Extremely important concept in computer science

Graph 𝑮 = (𝑽, 𝑬)

• 𝑉: node (or vertex) set

• 𝐸 ⊆ 𝑉2: edge set
– undirected graph: we often think of edges as sets of size 2 (e.g., {𝑢, 𝑣})

– directed graph (digraph): edges are sometimes also called arcs

– simple graph: no self-loops, no multiple edges

– weighted graph: (positive) weight on edges (or nodes)

• (simple) path: sequence 𝑣0, … , 𝑣𝑘 of nodes such that
𝑣𝑖 , 𝑣𝑖+1 ∈ 𝐸 for all 𝑖 ∈ {0,… , 𝑘 − 1}

• …

Many real-world problems can be formulated as 
optimization problems on graphs.
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Graph Optimization: Examples

Minimum spanning tree (MST):

• Compute min. weight spanning tree of a weighted undir. Graph

Shortest paths:

• Compute (length) of shortest paths (single source, all pairs, …)

Traveling salesperson (TSP):

• Compute shortest TSP path/tour in weighted graph

Vertex coloring:

• Color the nodes such that neighbors get different colors

• Goal: minimize the number of colors

Maximum matching:

• Matching: set of pair-wise non-adjacent edges

• Goal: maximize the size of the matching
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Network Flow

Flow Network:

• Directed graph 𝐺 = (𝑉, 𝐸), 𝐸 ⊆ 𝑉2

• Each (directed) edge 𝑒 has a capacity 𝑐𝑒 ≥ 0
– Amount of flow (traffic) that the edge can carry

• A single source node 𝑠 ∈ 𝑉 and a single sink node 𝑡 ∈ 𝑉
– Source 𝑠 has only outgoing edges, sink 𝑡 has only incoming edges

Flow: (informally)

• Traffic from 𝑠 to 𝑡 such that each edge carries at most its capacity

Examples:

• Highway system: edges are highways, flow is the traffic

• Computer network: edges are network links, flow is data

• Fluid network: edges are pipes that carry liquid
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Example: Flow Network
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Network Flow: Definition

Flow: function 𝒇: 𝑬 → ℝ≥𝟎

• 𝑓(𝑒) is the amount of flow carried by edge 𝑒

Capacity Constraints:

• For each edge 𝑒 ∈ 𝐸, 𝑓 𝑒 ≤ 𝑐𝑒

Flow Conservation:

• For each node 𝑣 ∈ 𝑉 ∖ 𝑠, 𝑡 ,

෍

𝑒 into 𝑣

𝑓 𝑒 = ෍

𝑒 out of 𝑣

𝑓 𝑒

Flow Value:

|𝑓| ≔ ෍

𝑒 out of 𝑠

𝑓 𝑠, 𝑢 = ෍

𝑒 into 𝑡

𝑓 𝑣, 𝑡
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Notation

We define:

𝑓in 𝑣 ≔ ෍

𝑒 into 𝑣

𝑓 𝑒 , 𝑓out 𝑣 ≔ ෍

𝑒 out of 𝑣

𝑓(𝑒)

For a set 𝑨 ⊆ 𝑽:

𝑓in 𝐴 ≔ ෍

𝑒 into 𝐴

𝑓 𝑒 , 𝑓out 𝐴 ≔ ෍

𝑒 out of 𝑆

𝑓(𝑒)

Flow conservation: ∀𝑣 ∈ 𝑉 ∖ 𝑠, 𝑡 : 𝑓in 𝑣 = 𝑓out(𝑣)

Flow value: 𝑓 = 𝑓out 𝑠 = 𝑓in(𝑡)

For simplicity: Assume that all capacities are positive integers
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The Maximum-Flow Problem

Maximum Flow:

Given a flow network, find a flow of maximum possible value

• Classic graph optimization problem

• Many applications (also beyond the obvious ones)

• Requires new algorithmic techniques
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Maximum Flow: Greedy?

Does greedy work?

A natural greedy algorithm:

• As long as possible, find an 𝑠-𝑡-path with free capacity and 
add as much flow as possible to the path

𝑠 𝑡

𝑢

𝑣
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𝟏𝟎

𝟏𝟎
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Improving the Greedy Solution

• Try to push 10 units of flow on edge (𝑠, 𝑣)

• Too much incoming flow at 𝑣: reduce flow on edge (𝑢, 𝑣)

• Add that flow on edge (𝑢, 𝑡)

𝑠 𝑡

𝑢

𝑣
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𝟐𝟎

𝟐𝟎

𝟐𝟎
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Residual Graph

Given a flow network 𝐺 = 𝑉, 𝐸 with capacities 𝑐𝑒 (for 𝑒 ∈ 𝐸)

For a flow 𝑓 on 𝐺, define directed graph 𝐺𝑓 = (𝑉𝑓 , 𝐸𝑓) as follows:

• Node set 𝑉𝑓 = 𝑉

• For each edge 𝑒 = (𝑢, 𝑣) in 𝐸, there are two edges in 𝐸𝑓:

– forward edge 𝑒 = (𝑢, 𝑣) with residual capacity 𝑐𝑒 − 𝑓(𝑒)

– backward edge 𝑒′ = (𝑣, 𝑢) with residual capacity 𝑓(𝑒)

𝑢 𝑣
𝑐𝑒 = 30

𝑓(𝑒) = 20

forward edge 𝑒 : 𝑐𝑒 = 10

backward edge 𝑒′ : 𝑐𝑒′ = 20
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Residual Graph: Example
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Residual Graph: Example

Flow 𝒇
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Residual Graph: Example

Residual Graph 𝑮𝒇
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Augmenting Path

Residual Graph 𝑮𝒇
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Augmenting Path

Augmenting Path

𝑠
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Augmenting Path

New Flow
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Augmenting Path

Definition:
An augmenting path 𝑃 is a (simple) 𝑠-𝑡-path on the residual 
graph 𝐺𝑓 on which each edge has residual capacity > 0.

bottleneck(𝑃, 𝑓): minimum residual capacity on any edge of the
augmenting path 𝑃

Augment flow 𝒇 to get flow 𝒇′:

• For every forward edge (𝑢, 𝑣) on 𝑃: 

𝒇′ 𝒖, 𝒗 ≔ 𝒇 𝒖, 𝒗 + 𝐛𝐨𝐭𝐭𝐥𝐞𝐧𝐞𝐜𝐤 𝑷, 𝒇

• For every backward edge (𝑢, 𝑣) on 𝑃:

𝒇′ 𝒗, 𝒖 ≔ 𝒇 𝒗, 𝒖 − 𝐛𝐨𝐭𝐭𝐥𝐞𝐧𝐞𝐜𝐤(𝑷, 𝒇)
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Augmented Flow

Lemma: Given a flow 𝑓 and an augmenting path 𝑃, the resulting 
augmented flow 𝑓′ is legal and its value is

𝒇′ = 𝒇 + 𝐛𝐨𝐭𝐭𝐥𝐞𝐧𝐞𝐜𝐤 𝑷, 𝒇 .

Proof:

𝑣

2 forward edges

+

+
𝑣

2 backward edges

−

−

𝑣

forward & backward edge

+

−
𝑣−

+

𝑣

flow value increases

+
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Ford-Fulkerson Algorithm

• Improve flow using an augmenting path as long as possible: 

1. Initially, 𝑓 𝑒 = 0 for all edges 𝑒 ∈ 𝐸, 𝐺𝑓 = 𝐺

2. while there is an augmenting 𝑠-𝑡-path 𝑃 in 𝐺𝑓 do

3. Let 𝑃 be an augmenting 𝑠-𝑡-path in 𝐺𝑓;

4. 𝑓′ ≔ augment(𝑓, 𝑃);

5. update 𝑓 to be 𝑓′;

6. update the residual graph 𝐺𝑓

7. end;
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Ford-Fulkerson Running Time

Theorem: If all edge capacities are integers, the Ford-Fulkerson 
algorithm terminates after at most 𝐶 iterations, where

𝐶 = "max flow value" ≤ ෍

𝑒 out of 𝑠

𝑐𝑒 .

Proof:

1. At all times, for all 𝑒 ∈ 𝐸, 𝑓 𝑒 is an integer
• Initially: 𝑓 𝑒 = 0

• In one iteration:

• augmenting path 𝑃: all residual capacities are integers

• bottleneck 𝑃, 𝑓 > 0 and also bottleneck 𝑃, 𝑓 is an integer

• 𝑓′ 𝑒 = 𝑓 𝑒 or 𝑓′ 𝑒 = 𝑓 𝑒 ± bottleneck 𝑃, 𝑓

2. New flow value 𝑓′ = 𝑓 + bottleneck 𝑃, 𝑓 ≥ 𝑓 + 1

⟹ #iterations ≤ 𝑪
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Ford-Fulkerson Running Time

Theorem: If all edge capacities are integers, the Ford-Fulkerson 
algorithm can be implemented to run in 𝑂(𝑚𝐶) time.

Proof:

Show that each of the ≤ 𝐶 iterations requires 𝑂 𝑚 time.

1. Compute / update residual graph:

2. Find augmenting path / conclude that no augm. path exists

⟹ Graph traversal: using DFS or BFS: 𝑂 𝑚

3. Update flow values: 𝑂 𝑛

𝑚: #edges

1st iteration:       𝑂 𝑚

Later iterations:𝑂 𝑛

find positive 𝑠-𝑡 path in residual graph 𝐺𝑓
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𝑠-𝑡 Cuts

Definition:
An 𝑠-𝑡 cut is a partition (𝐴, 𝐵) of the vertex set such that 𝑠 ∈ 𝐴
and 𝑡 ∈ 𝐵
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Cut Capacity

Definition:
The capacity 𝑐 𝐴, 𝐵 of an 𝑠-𝑡-cut (𝐴, 𝐵) is defined as

𝒄 𝑨,𝑩 ≔ ෍

𝒆 𝐨𝐮𝐭 𝐨𝐟 𝑨

𝒄𝒆 .

𝑠
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𝑧
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𝑨
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Cuts and Flow Value

Lemma: Let 𝑓 be any 𝑠-𝑡 flow, and (𝐴, 𝐵) any 𝑠-𝑡 cut. Then,

𝒇 = 𝒇𝐨𝐮𝐭 𝑨 − 𝒇𝐢𝐧 𝑨 .

Proof:

𝑓 = 𝑓out 𝑠 , = 𝑓in 𝑡

𝑓 = 𝑓out 𝑠 − 𝑓in 𝑠

= 0

= ෍

𝑣∈𝐴

𝑓out 𝑣 − 𝑓in 𝑣

= 0, except for 𝑣 = 𝑠

= 𝑓out 𝐴 − 𝑓in 𝐴

𝐴 𝐵
𝑠 𝑡

𝑓out 𝐴

𝑓in 𝐴
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Cuts and Flow Value

Lemma: Let 𝑓 be any 𝑠-𝑡 flow, and (𝐴, 𝐵) any 𝑠-𝑡 cut. Then,

𝒇 = 𝒇𝐨𝐮𝐭 𝑨 − 𝒇𝐢𝐧 𝑨 .

Lemma: Let 𝑓 be any 𝑠-𝑡 flow, and (𝐴, 𝐵) any 𝑠-𝑡 cut. Then,

𝒇 = 𝒇𝐢𝐧 𝑩 − 𝒇𝐨𝐮𝐭 𝑩 .

Proof:

• Either do the same argument as before, symmetrically

• Or, use that 𝑓out 𝐴 = 𝑓in(𝐵) and 𝑓in 𝐴 = 𝑓out(𝐵)

𝐴 𝐵
𝑠 𝑡

𝑓out 𝐴 = 𝑓in(𝐵)

𝑓in 𝐴 = 𝑓out 𝐵
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Upper Bound on Flow Value

Lemma:

Let 𝑓 be any 𝑠-𝑡 flow and (𝐴, 𝐵) any 𝑠-𝑡 cut. Then 𝒇 ≤ 𝒄(𝑨,𝑩).

Proof:

𝑓 = 𝑓out 𝐴 − 𝑓in 𝐴

𝑓out 𝐴 ≤ 𝑐 𝐴, 𝐵

𝑓in 𝐴 ≥ 0

≤ 𝑐 𝐴, 𝐵

𝐴 𝐵
𝑠 𝑡

= 𝑐(𝐴, 𝐵)
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Ford-Fulkerson Gives Optimal Solution

Lemma: If 𝑓 is an 𝑠-𝑡 flow such that there is no augmenting path 
in 𝐺𝑓, then there is an 𝑠-𝑡 cut (𝐴∗, 𝐵∗) in 𝐺 for which

𝒇 = 𝒄 𝑨∗, 𝑩∗ .

Proof:

• Define 𝑨∗: set of nodes that can be reached from 𝑠 on a path 
with positive residual capacities in 𝐺𝑓:

• For 𝐵∗ = 𝑉 ∖ 𝐴∗, (𝐴∗, 𝐵∗) is an 𝑠-𝑡 cut
– By definition 𝑠 ∈ 𝐴∗ and 𝑡 ∉ 𝐴∗

𝐴∗
𝑠 +

+

+

+

+

+ +

+ +

+ +

+

+

+

+

+

+

+

𝐵∗ 𝑡

Residual capacity = 0

0

0

0

00
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Ford-Fulkerson Gives Optimal Solution

Lemma: If 𝑓 is an 𝑠-𝑡 flow such that there is no augmenting path 
in 𝐺𝑓, then there is an 𝑠-𝑡 cut (𝐴∗, 𝐵∗) in 𝐺 for which

𝒇 = 𝒄 𝑨∗, 𝑩∗ .

Proof:

𝐴∗ 𝐵∗

Edge 𝑒 from 
𝐴∗ to 𝐵∗ in 𝐺

Forward edge
𝑒 in 𝐺𝑓

Edge 𝑒 from 
𝐵∗ to 𝐴∗ in 𝐺

Backward edge 
𝑒′ in 𝐺𝑓

𝑐𝑒 = 0

𝑐𝑒′ = 0

𝑓 𝑒 = 𝑐𝑒

𝑓 𝑒 = 0

𝐴∗ 𝐵∗𝑠 𝑡

𝑓out 𝐴∗ = 𝑐(𝐴∗, 𝐵∗)

𝑓in 𝐴∗ = 0
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Ford-Fulkerson Gives Optimal Solution

Theorem: The flow returned by the Ford-Fulkerson algorithm is a 
maximum flow.

Proof:

• Ford-Fulkerson algorithm gives a flow 𝑓∗ and a cut 𝐴∗, 𝐵∗

s. t. 𝑓∗ = 𝑐 𝐴∗, 𝐵∗ .

• We saw that 𝑓 ≤ 𝑐 𝐴, 𝐵 for every valid flow 𝑓
and every 𝑠-𝑡 cut 𝐴, 𝐵 .
– And thus in particular also 𝑓 ≤ 𝑐 𝐴∗, 𝐵∗ .
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Min-Cut Algorithm

Ford-Fulkerson also gives a minimum 𝑠-𝑡 cut algorithm:

Theorem: Given a flow 𝑓 of maximum value, we can compute an 
𝑠-𝑡 cut of minimum capacity in 𝑂(𝑚) time.

Proof:

• 𝑓 maximum ⟹ no augmenting path

• We can therefore construct cut 𝐴∗, 𝐵∗ as before

– By using DFS/BFS on the positive res. cap. edges of 𝐺𝑓 in time 𝑂 𝑚 .

• 𝐴∗, 𝐵∗ is a cut of minimum capacity:
– For every other 𝑠-𝑡 cut 𝐴, 𝐵 , we know that 𝑓 ≤ 𝑐 𝐴, 𝐵

– Because 𝑓 = 𝑐(𝐴∗, 𝐵∗), we therefore have

𝑐 𝐴∗, 𝐵∗ ≤ 𝑐 𝐴, 𝐵 .
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Max-Flow Min-Cut Theorem

Theorem: (Max-Flow Min-Cut Theorem)

In every flow network, the maximum value of an 𝑠-𝑡 flow is 
equal to the minimum capacity of an 𝑠-𝑡 cut.

Proof:

• Ford-Fulkerson gives a maximum flow 𝑓∗

and a minimum cut (𝐴∗, 𝐵∗) s.t.

𝑓∗ = 𝑐 𝐴∗, 𝐵∗ .
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Integer Capacities

Theorem: (Integer-Valued Flows)

If all capacities in the flow network are integers, then there is a 
maximum flow 𝑓 for which the flow 𝑓 𝑒 of every edge 𝑒 is an 
integer.

Proof:

• If all the capacities are integers, the Ford-Fulkerson algorithm 
gives an integer solution.
– By induction on the steps of the algorithm, all flow values are always 

integers and all residual capacities of 𝐺𝑓 are always integers.
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Non-Integer Capacities

If a given flow network has integer capacities, the Ford-Fulkerson 
algorithm computes a maximum flow of value 𝐶 in time 𝑂(𝑚 ⋅ 𝐶).

What if capacities are not integers?

• rational capacities:
– can be turned into integers by multiplying them with large enough integer

– algorithm still works correctly

• real (non-rational) capacities:
– not clear whether the algorithm always terminates

• even for integer capacities, time can linearly depend on the value 
of the maximum flow
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Slow Execution

• Number of iterations: 2000 (value of max. flow)

𝑠 𝑡

𝑢

𝑣

1000

1000

1000

1000

1

𝟏

𝟏

𝟏

𝟏

𝟏

𝟎

𝟐𝟐

𝟐 𝟐
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Improved Algorithm

Idea: Find the best augmenting path in each step

• best: path 𝑃 with maximum bottleneck(𝑃, 𝑓)

• Best path might be rather expensive to find
→ find almost best path

• Scaling parameter 𝚫: 
(initially, Δ = "max 𝑐𝑒 rounded down to next power of 2")

• As long as there is an augmenting path that improves the flow by 
at least Δ, augment using such a path

• If there is no such path: Δ ≔ ΤΔ 2
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Scaling Parameter Analysis

Lemma: If all capacities are integers, number of different scaling 
parameters used is ≤ 1 + ⌊log2 𝑐max⌋.

• 𝚫-scaling phase: Time during which scaling parameter is Δ

𝑐max≔ max
𝑒

𝑐𝑒

At the beginning: Δ = 2 log2 𝑐max

At the end:            Δ = 1

# different scaling parameters Δ: log2 𝑐max + 1

running time = #scaling phases ⋅ #iterations per phase ⋅ 𝑂 𝑚

𝑂 log 𝑐max ???
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Length of a Scaling Phase

Lemma: If 𝑓 is the flow at the end of the Δ-scaling phase, the 
maximum flow in the network has value less than 𝑓 + 𝑚Δ.

Proof:

• Define 𝐴: set of nodes that can be reached from 𝑠 on a path 
with residual capacities ≥ Δ in 𝐺𝑓.

𝐴
𝑠

≥ Δ
≥ Δ

≥ Δ
≥ Δ

≥ Δ

≥ Δ ≥ Δ

≥ Δ

≥ Δ

≥ Δ

≥ Δ

≥ Δ

≥ Δ

≥ Δ

≥ Δ ≥ Δ

≥ Δ

𝐵
𝑡

Residual capacity < Δ

< Δ

< Δ

< Δ

< Δ

< Δ

𝐴 𝐵
𝑠 𝑡

𝑚1 edges
𝑓 𝑒 > 𝑐𝑒 − Δ

𝑚2 edges
𝑓 𝑒 < Δ

𝑓 = 𝑓out 𝐴 − 𝑓in 𝐴 > 𝑐 𝐴, 𝐵 −𝑚1Δ −𝑚2Δ ≥ 𝑐 𝐴, 𝐵 −𝑚Δ
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Length of a Scaling Phase

Lemma: The number of augmentation in each scaling phase
is less than 2𝑚.

Proof:

• At the end of the 2Δ-scaling phase: 𝑓∗ < 𝑓 + 2𝑚Δ

• Each augmentation in the Δ-scaling phase improves the value 
of the flow 𝑓 by at least Δ.

• #augmentations in Δ-scaling phase < 2𝑚.
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Running Time: Scaling Max Flow Alg.

Theorem: The number of augmentations of the algorithm with 
scaling parameter and integer capacities is at most 𝑂(𝑚 log 𝑐max). 
The algorithm can be implemented in time 𝑂 𝑚2 log 𝑐max .

Proof:

• #scaling phases: 𝑂 log 𝑐max

• #iterations per scaling phase: 𝑂 𝑚

• time per iteration: 𝑂 𝑚
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Strongly Polynomial Algorithm

• Time of regular Ford-Fulkerson algorithm with integer capacities:

𝑂(𝑚𝐶)

• Time of algorithm with scaling parameter:

𝑂 𝑚2 log 𝑐max

• 𝑂(log 𝑐max) is polynomial in the size of the input, but not in 𝑛

• Can we get an algorithm that runs in time polynomial in 𝑛?

• Edmonds-Karp Alg.: Always picking a shortest augmenting path:

𝑂 𝑚2𝑛

– also works for arbitrary real-valued weights

– We will show this next.



Algorithm Theory Fabian Kuhn 42

Shortest Augmenting Path Algorithm

• Define 𝐺𝑓
+ as the subgraph of 𝐺𝑓 with only the edges with positive 

residual capacity.

– augmenting path = any 𝑠-𝑡 path in 𝐺𝑓
+

• Level ℓ 𝒗 of node 𝒗:
length (# of edges) of shortest path from 𝑠 to 𝑣 in 𝐺𝑓

+.

𝑠 𝑡

ℓ(𝑠) = 0 ℓ(𝑣) = 1 ℓ(𝑣) = 2 ℓ(𝑣) = 3 ℓ 𝑣 = 𝑑 − 1 ℓ(𝑡) = 𝑑

⋯
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Shortest Augmenting Path Algorithm

Lemma 1: For every node 𝑣, the level ℓ 𝑣 is non-decreasing.

Proof:

• Consider augmentation along one augmenting path

– Before augmentation, edges are between consecutive levels

• The set of edges of 𝐺𝑓
+ only changes if the residual capacity of some 

edge changes:

– If 𝑒 is on augmenting path 𝑃 and 𝑐𝑒 = bottleneck(𝑃, 𝑓), after 
augmentation, 𝑐𝑒 = 0 and 𝑒 is removed from 𝐺𝑓

+

– The residual cap. of the edge 𝑒′ in the opposite direction could increase 
from 0 to > 0 and be added to 𝐺𝑓

+

𝑠 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑡

ℓ(𝑠) = 0 ℓ(𝑣1) = 1 ℓ(𝑣2) = 2 ℓ(𝑣3) = 3 ℓ(𝑣4) = 4 ℓ(𝑣5) = 5 ℓ(𝑡) = 𝑑

⋯

𝑢 𝑣
𝑒

𝑒′
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Shortest Augmenting Path Algorithm

Lemma 1: For every node 𝑣, the level ℓ 𝑣 is non-decreasing.

Proof:

• Consider augmentation along one augmenting path

– Before augmentation, edges are between consecutive levels

– A shortest augmenting path consists of exactly one node of each level.

– The only new edges are from level 𝑖 + 1 to level 𝑖 for some 𝑖 ≥ 0.
(for the levels before augmenting along the path)

– Such edges cannot create shortcuts to create 𝑠-𝑤 paths of length < ℓ 𝑤

– Levels of all nodes are non-decreasing.

𝑠 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑡

ℓ(𝑠) = 0 ℓ(𝑣1) = 1 ℓ(𝑣2) = 2 ℓ(𝑣3) = 3 ℓ(𝑣4) = 4 ℓ(𝑣5) = 5 ℓ(𝑡) = 𝑑

⋯

𝑢 𝑣
𝑒

𝑒′
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Shortest Augmenting Path Algorithm

Lemma 2: There are at most 𝑂 𝑚 ⋅ 𝑛 augmentation steps.

Proof:

• In each augmentation step, at least one edge 𝑢, 𝑣 is deleted from 𝐺𝑓
+

– Some edge 𝑒 = 𝑢, 𝑣 on the augmenting path 𝑃 has  𝑐𝑒 = bottleneck(𝑃, 𝑓)

– The residual capacity of 𝑒 is set to 0 and 𝑒 is removed from 𝐺𝑓
+

• When 𝑢, 𝑣 is deleted from 𝐺𝑓
+, for some 𝑖 ≥ 0:

ℓ 𝑢 = 𝑖, ℓ 𝑣 = 𝑖 + 1

• If 𝑢, 𝑣 is later added back to 𝐺𝑓
+, for some 𝑗 ≥ 0:

ℓ 𝑢 = 𝑗 + 1, ℓ 𝑣 = 𝑗

• Because level ℓ(𝑣) is non-decreasing: 𝑗 ≥ 𝑖 + 1
⟹ When 𝑢, 𝑣 is added back, ℓ 𝑢 ≥ 𝑖 + 2

• Because the maximum possible level is 𝑛 − 1, each edge is deleted 
from 𝐺𝑓

+ at most 𝑂 𝑛 times.
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Shortest Augmenting Path Algorithm

Theorem: The Edmonds-Karp algorithm computes a maximum flow in 
time 𝑂 𝑚2𝑛 even with arbitrary non-negative capacity values.

• Edmonds-Karp algorithm = Ford-Fulkerson algorithm, 
where we choose a shortest augmenting path in each step.

Proof:

• From lemma before: 𝑂 𝑚 ⋅ 𝑛 augmentation steps

• A shortest augmenting path can be found in time 𝑂 𝑚 + 𝑛 by using a 
BFS traversal on the positive residual graph 𝐺𝑓

+.
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Other Algorithms

• There are many other algorithms to solve the maximum flow 
problem, for example:

• Preflow-push algorithm:      [Goldberg,Tarjan 1986]

– Maintains a preflow (∀ nodes: inflow ≥ outflow)

– Alg. guarantees: As soon as we have a flow, it is optimal

– Detailed discussion in 2012/13 lecture

– Running time of basic algorithm: 𝑂 𝑚 ⋅ 𝑛2

– Doing steps in the “right” order: 𝑂 𝑛3

• Current best known complexity: 𝑶 𝒎 ⋅ 𝒏
– For graphs with 𝑚 ≥ 𝑛1+𝜖 [King,Rao,Tarjan 1992/1994]

(for every constant 𝜖 > 0)

– For sparse graphs with 𝑚 ≤ 𝑛 Τ16 15−𝛿 [Orlin, 2013]

• Best known since 2022: 𝑶 𝒎 ⋅ 𝒏𝒐 𝟏

– Uses a continuous optimization approach

– Published by Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian 
Probst Gutenberg, Sushant Sachdeva


