

Algorithm Theory

Chapter 6 Graph Algorithms

Maximum Flow: Ford Fulkerson Algorithm

Fabian Kuhn

Graphs

Extremely important concept in computer science

Graph G = (V, E)

- V: node (or vertex) set
- $E \subseteq V^2$: edge set

- undirected graph: we often think of edges as sets of size 2 (e.g., $\{u, v\}$)
- directed graph (digraph): edges are sometimes also called arcs
- simple graph: no self-loops, no multiple edges
- weighted graph: (positive) weight on edges (or nodes)
- (simple) path: sequence v_0, \dots, v_k of nodes such that $(v_i, v_{i+1}) \in E$ for all $i \in \{0, \dots, k-1\}$

Many real-world problems can be formulated as optimization problems on graphs.

Graph Optimization: Examples

UNI

Minimum spanning tree (MST):

• Compute min. weight spanning tree of a weighted undir. Graph

Shortest paths:

• Compute (length) of shortest paths (single source, all pairs, ...)

Traveling salesperson (TSP):

• Compute shortest TSP path/tour in weighted graph

Vertex coloring:

- Color the nodes such that neighbors get different colors
- Goal: minimize the number of colors

Maximum matching:

- Matching: set of pair-wise non-adjacent edges
- Goal: maximize the size of the matching

Algorithm Theory

Network Flow

Flow Network:

- Directed graph $G = (V, E), E \subseteq V^2$
- Each (directed) edge e has a capacity $c_e \ge 0$
 - Amount of flow (traffic) that the edge can carry
- A single source node $s \in V$ and a single sink node $t \in V$
 - Source s has only outgoing edges, sink t has only incoming edges

Flow: (informally)

• Traffic from s to t such that each edge carries at most its capacity

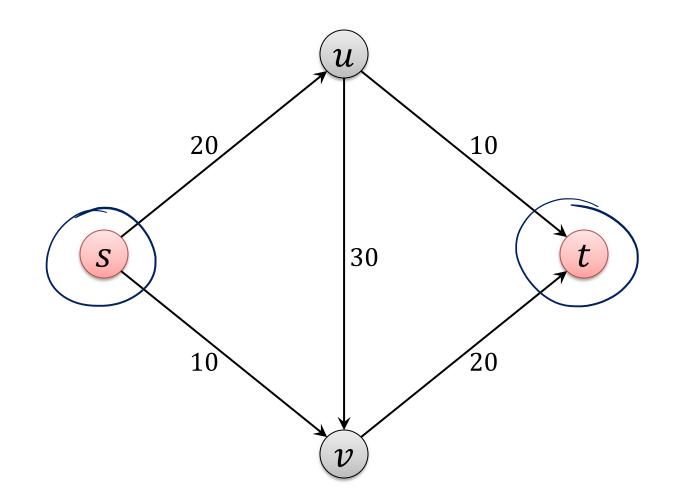
Examples:

- Highway system: edges are highways, flow is the traffic
- Computer network: edges are network links, flow is data
- Fluid network: edges are pipes that carry liquid

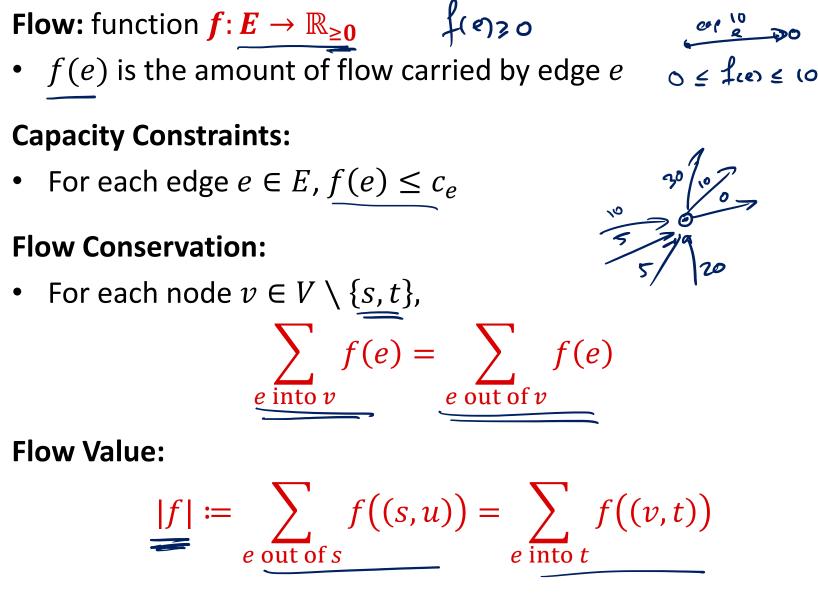
Algorithm Theory

Fabian Kuhn

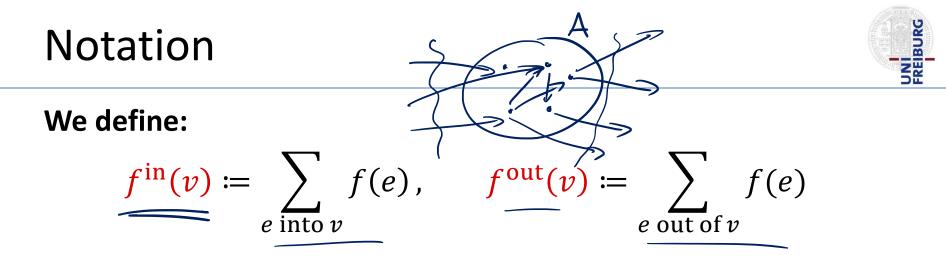
Example: Flow Network

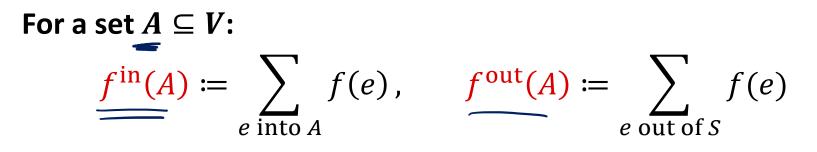


Network Flow: Definition



Fabian Kuhn





Flow conservation: $\forall v \in V \setminus \{s, t\}$: $f^{in}(v) = f^{out}(v)$

Flow value: $|f| = f^{out}(s) = f^{in}(t)$

For simplicity: Assume that all capacities are positive integers

Algorithm Theory

Fabian Kuhn

Maximum Flow:

Given a flow network, find a flow of maximum possible value

- Classic graph optimization problem
- Many applications (also beyond the obvious ones)
- Requires new algorithmic techniques

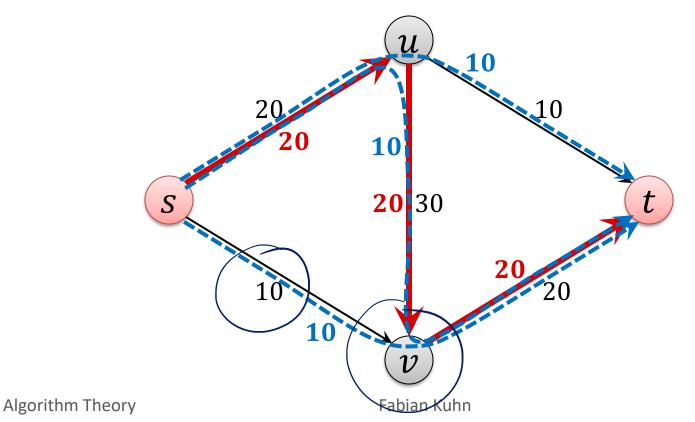
Maximum Flow: Greedy?

UN FREIBURG

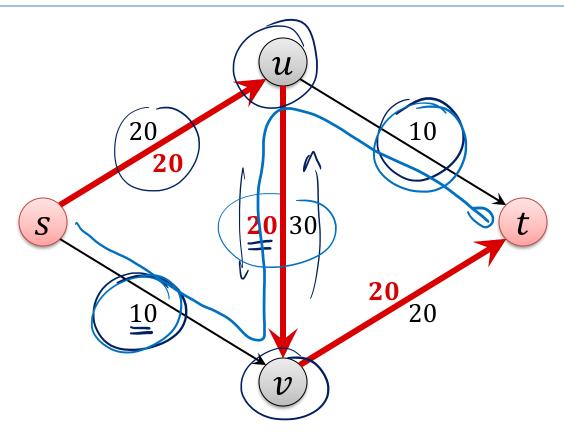
Does greedy work?

A natural greedy algorithm:

• As long as possible, find an *s*-*t*-path with free capacity and add as much flow as possible to the path



Improving the Greedy Solution



- Try to push 10 units of flow on edge (s, v)
- Too much incoming flow at v: reduce flow on edge (u, v)
- Add that flow on edge (*u*, *t*)

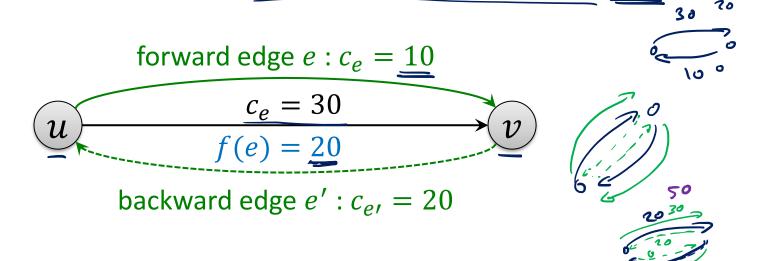
Residual Graph

Given a flow network $\underline{G = (V, E)}$ with capacities $\underline{c_e}$ (for $e \in E$)

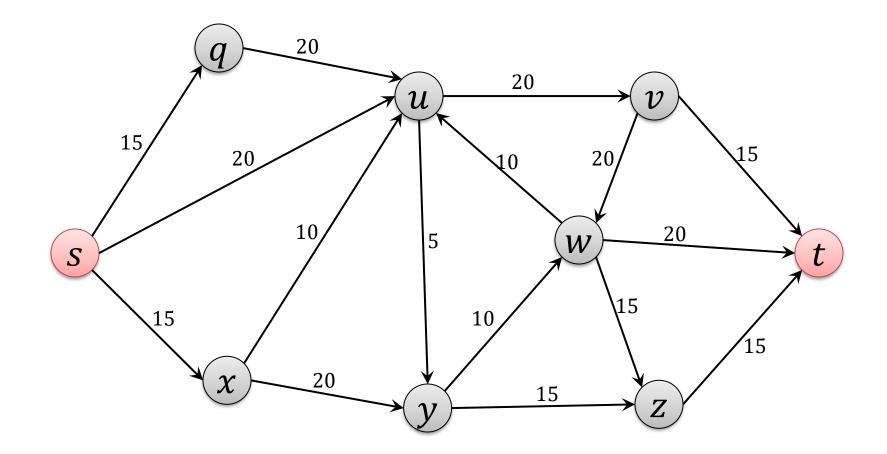
For a flow f on G, define directed graph $G_f = (V_f, E_f)$ as follows:

- Node set $V_f = V$
- For each edge e = (u, v) in E, there are two edges in E_f :
 - forward edge e = (u, v) with residual capacity $c_e f(e)$

- backward edge e' = (v, u) with residual capacity f(e)

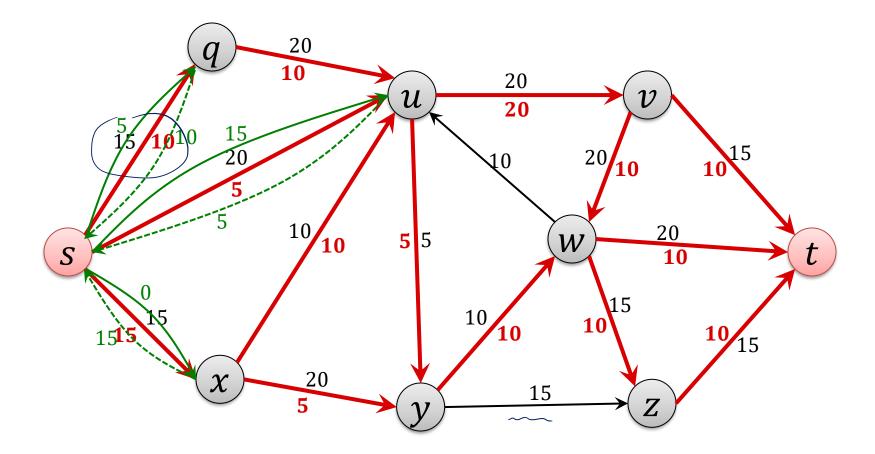


Residual Graph: Example

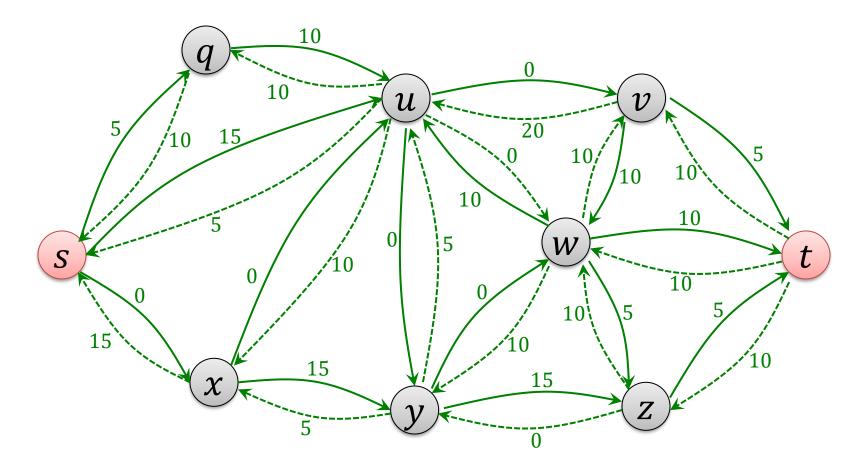


Residual Graph: Example

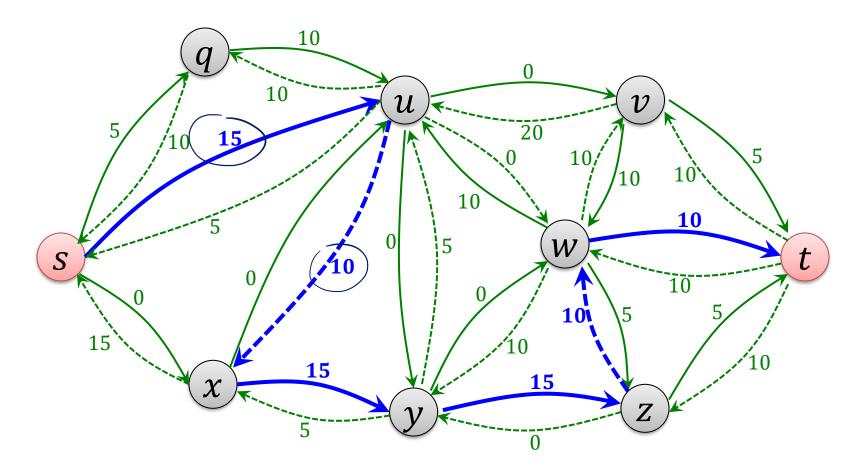
Flow f



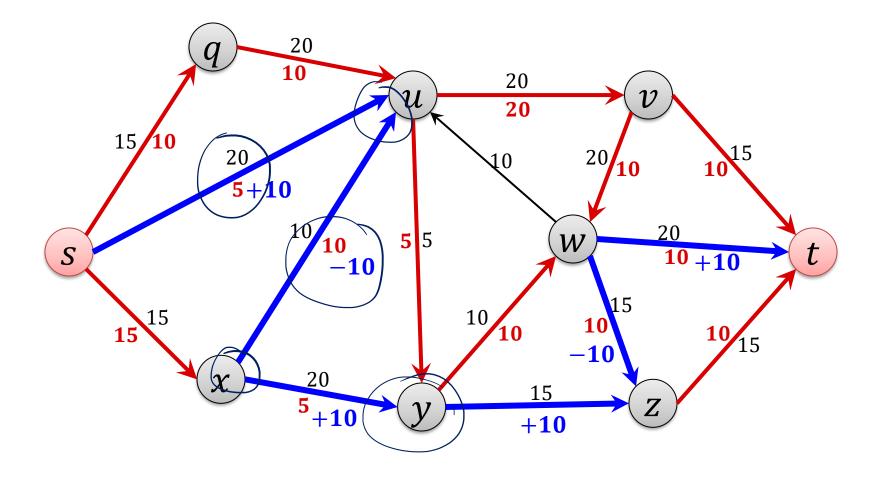
Residual Graph G_f



Residual Graph G_f

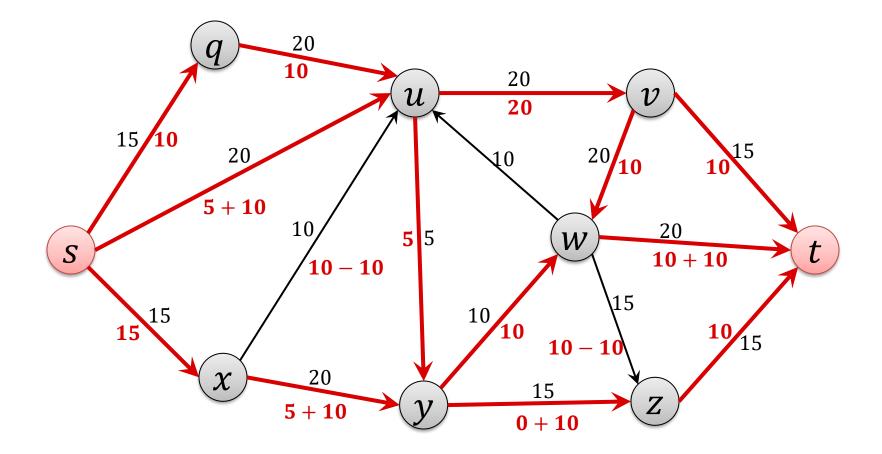


Augmenting Path



Augmenting Path

New Flow



Definition:

An augmenting path *P* is a (simple) <u>*s*-*t*-path</u> on the residual graph G_f on which each edge has residual capacity > 0.

bottleneck(P, f): minimum residual capacity on any edge of the augmenting path P

Augment flow f to get flow f':

• For every forward edge (u, v) on P:

 $f'((u,v)) \coloneqq f((\underline{u,v})) + \text{bottleneck}(P,f)$

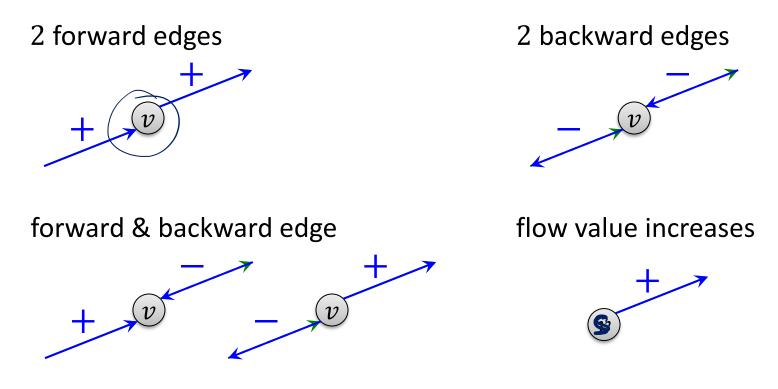
• For every backward edge (u, v) on P:

 $f'((\underline{v,u})) \coloneqq f((\underline{v,u})) - bottleneck(P,f)$

Augmented Flow

Lemma: Given a flow f and an augmenting path P, the resulting augmented flow f' is legal and its value is |f'| = |f| + bottleneck(P, f).

Proof:



Ford-Fulkerson Algorithm

- Improve flow using an augmenting path as long as possible:
- 1. Initially, f(e) = 0 for all edges $e \in E$, $G_f = G$
- 2. while there is an augmenting s-t-path P in G_f do
- 3. Let *P* be an augmenting s-t-path in G_f ;
- 4. $f' \coloneqq \operatorname{augment}(f, P);$
- 5. update f to be f';
- 6. update the residual graph G_f
- 7. **end**;

Ford-Fulkerson Running Time

Theorem: If all edge *capacities* are *integers*, the Ford-Fulkerson algorithm terminates after at most <u>*C*</u> iterations, where

$$C = "\max \text{ flow value}" \le \sum_{e \text{ out of } s} c_e.$$

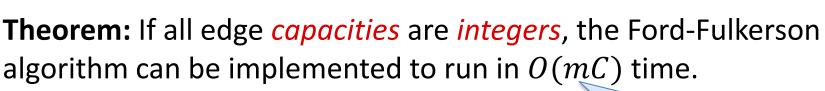
Proof:

- 1. At all times, for all $e \in E$, $\underline{f(e)}$ is an integer
 - Initially: f(e) = 0
 - In one iteration:
 - augmenting path *P*: all residual capacities are integers
 - bottleneck(P, f) > 0 and also bottleneck(P, f) is an integer
 - f'(e) = f(e) or $f'(e) = f(e) \pm \text{bottleneck}(P, f)$
- 2. New flow value $|f'| = |f| + \text{bottleneck}(P, f) \ge |f| + 1$ $\Rightarrow \text{#iterations} \le C$

Algorithm Theory

Fabian Kuhn

Ford-Fulkerson Running Time



m: #edges

Proof:

Show that each of the $\leq C$ iterations requires O(m) time.

- 1. Compute / update residual graph: 1^{st} iteration: $\underline{O(m)}$ Later iterations: $\underline{O(n)}$
- 2. Find augmenting path / conclude that no augm. path exists find positive s-t path in residual graph G_f

 \Rightarrow Graph traversal: using DFS or BFS: O(m)

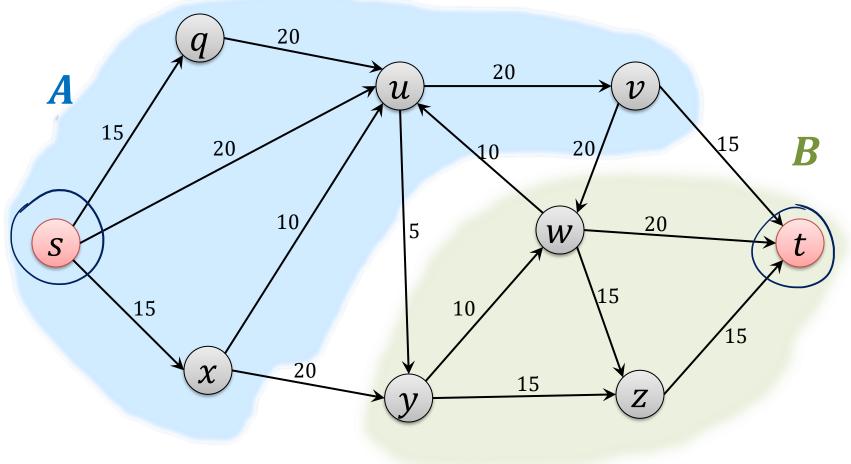
3. Update flow values: O(n)

(Ym+n)

<u>s-t Cuts</u>

Definition:

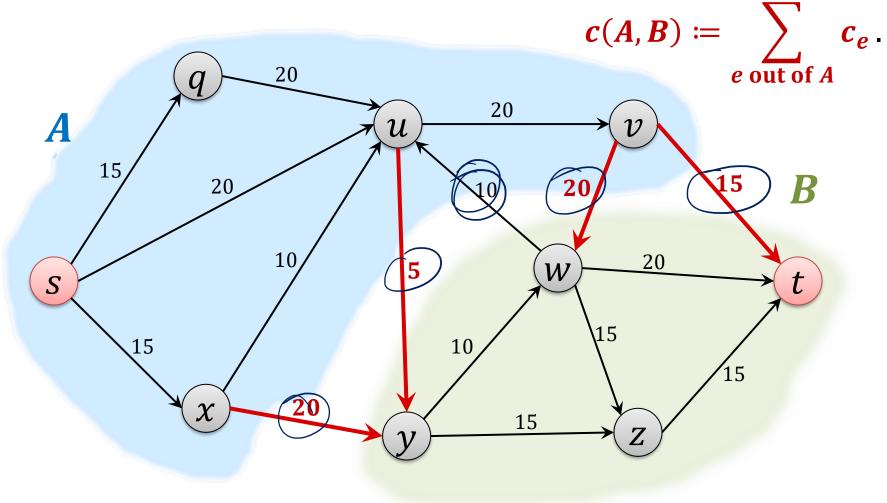
An *s*-*t* cut is a partition $(\underline{A}, \underline{B})$ of the vertex set such that $s \in A$ and $t \in B$



Cut Capacity

Definition:

The capacity c(A, B) of an *s*-*t*-cut (A, B) is defined as

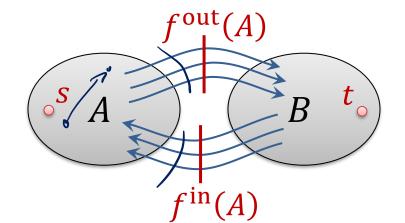


Cuts and Flow Value

Lemma: Let f be any s-t flow, and (A, B) any s-t cut. Then,

Proof:

 $|f| = f^{\text{out}}(s), \quad \left(=f^{\text{in}}(t)\right)$ $|f| = f^{\text{out}}(s) - f^{\text{in}}(s)$ $= \sum_{v \in A} \left(f^{\text{out}}(v) - f^{\text{in}}(v)\right)$ = 0, except for v = s



 $|f| = f^{\text{out}}(A) - f^{\text{in}}(A).$

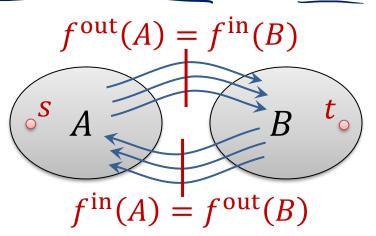
 $= \underline{f^{\text{out}}(A)} - \underline{f^{\text{in}}(A)}$

Cuts and Flow Value

Lemma: Let f be any s-t flow, and (A, B) any s-t cut. Then, $|f| = f^{out}(A) - f^{in}(A)$. **Lemma:** Let f be any s-t flow, and (A, B) any s-t cut. Then, $|f| = \underline{f^{in}(B)} - \underline{f^{out}(B)}$.

Proof:

- Either do the same argument as before, symmetrically
- Or, use that $f^{out}(A) = f^{in}(B)$ and $f^{in}(A) = f^{out}(B)$



Upper Bound on Flow Value

UN FREIBURG

Lemma:

Let f be any s-t flow and (A, B) any s-t cut. Then $|\underline{f}| \leq \underline{c(A, B)}$.

Proof:

$$|\underline{f}| = \underline{f^{\text{out}}(A)} - \underline{f^{\text{in}}(A)} \le c(A, B)$$

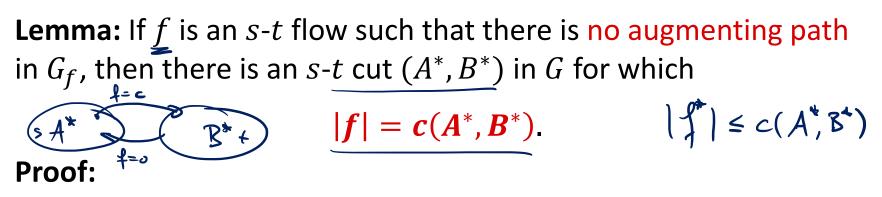
$$f^{\text{out}}(A) \le \underline{c(A, B)}$$

$$f^{\text{in}}(A) \ge 0$$

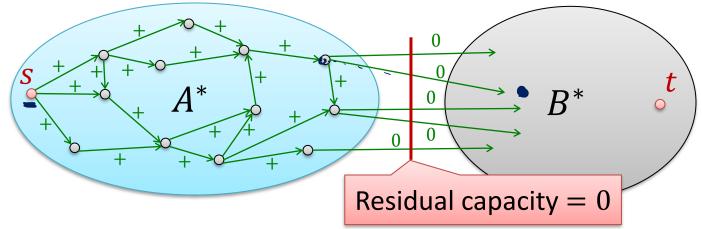
$$f^{\text{in}}(A) \ge 0$$

$$f^{\text{in}}(A) \ge 0$$

Ford-Fulkerson Gives Optimal Solution



Define <u>A</u>*: set of nodes that can be reached from s on a path with positive residual capacities in G_f:



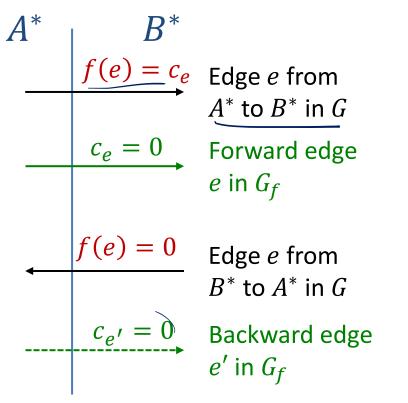
- For $B^* = V \setminus A^*$, (A^*, B^*) is an *s*-*t* cut
 - − By definition $s \in A^*$ and $t \notin A^*$

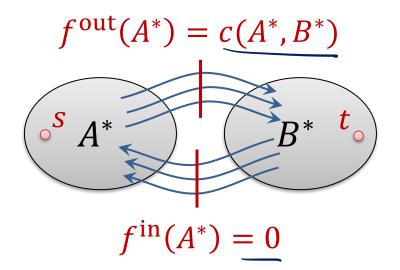
Ford-Fulkerson Gives Optimal Solution

Lemma: If f is an s-t flow such that there is no augmenting path in G_f , then there is an s-t cut (A^*, B^*) in G for which

 $|\boldsymbol{f}| = \boldsymbol{c}(\boldsymbol{A}^*, \boldsymbol{B}^*).$

Proof:





Ford-Fulkerson Gives Optimal Solution

Theorem: The flow returned by the Ford-Fulkerson algorithm is a maximum flow.

Proof:

• Ford-Fulkerson algorithm gives a flow f^* and a cut (A^*, B^*)

s.t.
$$|f^*| = c(A^*, B^*)$$
.

• We saw that $|f| \le c(A, B)$ for every valid flow fand every s-t cut (A, B).

- And thus in particular also $|f| \leq c(A^*, B^*)$.

Ford-Fulkerson also gives a minimum *s*-*t* cut algorithm:

Theorem: Given a flow f of maximum value, we can compute an s-t cut of minimum capacity in O(m) time.

Proof:

- f maximum \Rightarrow no augmenting path
- We can therefore construct cut (A^*, B^*) as before
 - By using DFS/BFS on the positive res. cap. edges of G_f in time O(m).
- (A^*, B^*) is a cut of minimum capacity:
 - For every other <u>s-t</u> cut (A, B), we know that $|f| \le c(A, B)$
 - Because $|f| = c(A^*, B^*)$, we therefore have

 $c(A^*, B^*) \leq c(A, A)$

Max-Flow Min-Cut Theorem

Theorem: (Max-Flow Min-Cut Theorem)

In every flow network, the maximum value of an s-t flow is equal to the minimum capacity of an s-t cut.

Proof:

 Ford-Fulkerson gives a maximum flow f* and a minimum cut (A*, B*) s.t.

 $|f^*| = c(A^*, B^*).$

Theorem: (Integer-Valued Flows)

If all capacities in the flow network are integers, then there is a maximum flow f for which the flow $\underline{f(e)}$ of every edge e is an integer.

Proof:

- If all the capacities are integers, the Ford-Fulkerson algorithm gives an integer solution.
 - By induction on the steps of the algorithm, all flow values are always integers and all residual capacities of G_f are always integers.

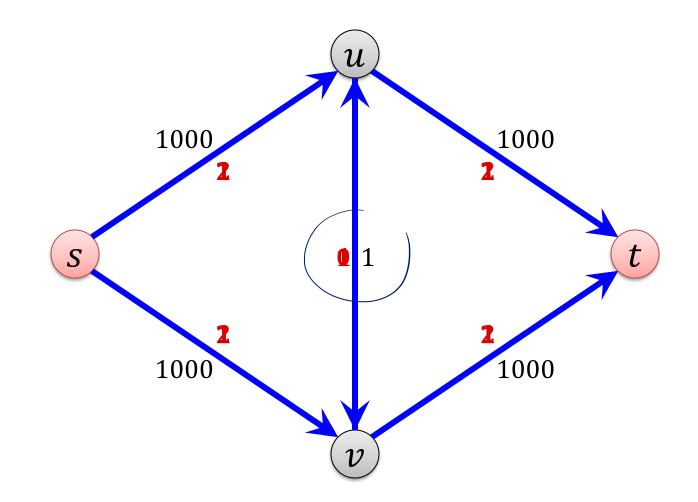
Non-Integer Capacities

If a given flow network has integer capacities, the Ford-Fulkerson algorithm computes a maximum flow of value C in time $O(m \cdot C)$.

What if capacities are not integers?

- rational capacities:
 - can be turned into integers by multiplying them with large enough integer
 - algorithm still works correctly
- real (non-rational) capacities:
 - not clear whether the algorithm always terminates
- even for integer capacities, time can linearly depend on the value of the maximum flow

Slow Execution



• Number of iterations: 2000 (value of max. flow)

Improved Algorithm

Idea: Find the best augmenting path in each step

- best: path P with maximum bottleneck(P, f)
- Best path might be rather expensive to find
 → find almost best path
- Scaling parameter Δ : (initially, $\Delta = \text{"max } c_e$ rounded down to next power of 2")
- As long as there is an augmenting path that improves the flow by at least Δ , augment using such a path

mar Ce

• If there is no such path: $\Delta \coloneqq \frac{\Delta}{2}$

Scaling Parameter Analysis

Lemma: If all capacities are integers, number of different scaling parameters used is $\leq 1 + \lfloor \log_2 c_{\max} \rfloor$.

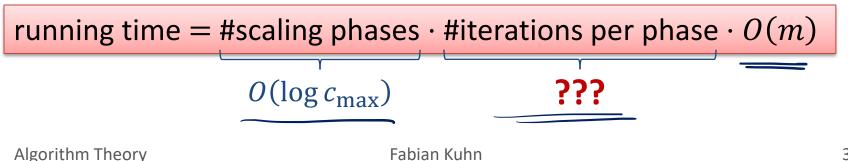
2 Lloge curer J

 $c_{\max} \coloneqq \max c_e$

At the beginning: $\Delta = \frac{2^{\lfloor \log_2 c_{\max} \rfloor}}{\Delta = 1}$

different scaling parameters Δ : $\lfloor \log_2 c_{\max} \rfloor + 1$

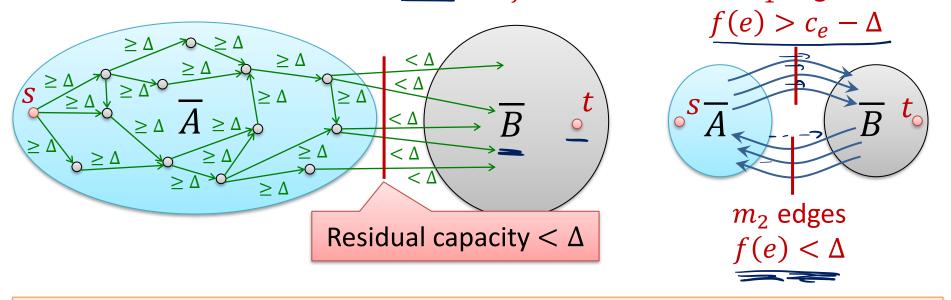
• **\Delta-scaling phase:** Time during which scaling parameter is Δ



Length of a Scaling Phase

Lemma: If f is the flow at the end of the Δ -scaling phase, the maximum flow in the network has value less than $|f| + m\Delta$. **Proof:**

• Define \overline{A} : set of nodes that can be reached from s on a path with residual capacities $\geq \Delta$ in G_f . m_1 edges



$$|f| = f^{\text{out}}(\overline{A}) - f^{\text{in}}(\overline{A}) > c(\overline{A}, \overline{B}) - m_1 \Delta - m_2 \Delta \ge c(\overline{A}, \overline{B}) - m\Delta$$

Length of a Scaling Phase

Lemma: The number of augmentation in each scaling phase is less than 2m.

Proof:

- At the end of the 2Δ -scaling phase: $|f^*| < |f| + 2m\Delta$
- Each augmentation in the Δ -scaling phase improves the value of the flow f by at least Δ .
- #augmentations in Δ -scaling phase < 2m.

Running Time: Scaling Max Flow Alg.

Theorem: The number of augmentations of the algorithm with scaling parameter and integer capacities is at most $O(m \log c_{\max})$. The algorithm can be implemented in time $O(m^2 \log c_{\max})$.

Proof:

- #scaling phases:
- #iterations per scaling phase:
- time per iteration:

 $O(\log c_{\max}) \longleftarrow$ $O(m) \longleftarrow$ $O(m) \longleftarrow$

Strongly Polynomial Algorithm

• Time of regular Ford-Fulkerson algorithm with integer capacities:

- Time of algorithm with scaling parameter:
- $O(\log c_{\max})$ is polynomial in the size of the input, but not in n
- Can we get an algorithm that runs in time polynomial in *n*?
- Edmonds-Karp Alg.: Always picking a shortest augmenting path:

 $O(\underline{m^2n})$

We will show this next.

- Define G_f^+ as the subgraph of G_f with only the edges with positive residual capacity.
 - augmenting path = any s-t path in G_f^+
- Level $\ell(v)$ of node v: length (# of edges) of shortest path from s to v in G_f^+ .

UNI FREIBURG

Lemma 1: For every node v, the level $\underbrace{\ell(v)}$ is non-decreasing. **Proof:**

• Consider augmentation along one augmenting path

$$\ell(s) = 0 \quad \ell(v_1) = 1 \quad \ell(v_2) = 2 \quad \ell(v_3) = 3 \quad \ell(v_4) = 4 \quad \ell(v_5) = 5 \qquad \qquad \ell(t) = d$$

$$s \longrightarrow v_1 \longrightarrow v_2 \longrightarrow v_3 \longrightarrow v_4 \longrightarrow v_5 \longrightarrow \cdots \qquad \longrightarrow t$$

- Before augmentation, edges are between consecutive levels
- The set of edges of G_f^+ only changes if the residual capacity of some edge changes: e

- If *e* is on augmenting path *P* and c_e = bottleneck(*P*, *f*), after augmentation, $c_e = 0$ and *e* is removed from G_f^+
- The residual cap. of the edge e' in the opposite direction could increase from 0 to > 0 and be added to G_f^+

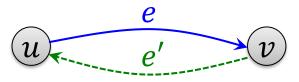
Lemma 1: For every node v, the level $\ell(v)$ is non-decreasing. **Proof:**

• Consider augmentation along one augmenting path

$$\ell(s) = 0 \quad \ell(v_1) = 1 \quad \ell(v_2) = 2 \quad \ell(v_3) = 3 \quad \ell(v_4) = 4 \quad \ell(v_5) = 5 \qquad \qquad \ell(t) = d$$

$$s \rightarrow v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow v_4 \rightarrow v_5 \rightarrow \cdots \rightarrow t$$

- Before augmentation, edges are between consecutive levels
- A shortest augmenting path consists of exactly one node of each level.
- The only new edges are from level i + 1 to level i for some $i \ge 0$. (for the levels before augmenting along the path)



- Such edges cannot create shortcuts to create s-w paths of length $< \ell(w)$
- Levels of all nodes are non-decreasing.

45

Shortest Augmenting Path Algorithm

Lemma 2: There are at most $O(m \cdot n)$ augmentation steps. **Proof:**

- In each augmentation step, at least one edge (u, v) is deleted from G_f^+
 - Some edge e = (u, v) on the augmenting path P has $c_e = \text{bottleneck}(P, f)$
 - The residual capacity of e is set to 0 and e is removed from G_f^+
- When (u, v) is deleted from G_f^+ , for some $i \ge 0$: $\ell(u) = i, \quad \ell(v) = i + 1$
- If (u, v) is later added back to G_f^+ , for some $j \ge 0$: $j_{1} \ge j_{2} = 1$ $\ell(u) = j + 1$, $\ell(v) = j$
- Because level $\ell(v)$ is non-decreasing: $j \ge i + 1$ \Rightarrow When (u, v) is added back, $\ell(u) \ge i + 2$
- Because the maximum possible level is n-1, each edge is deleted from G_f^+ at most O(n) times.

Algorithm Theory

Fabian Kuhn

Theorem: The Edmonds-Karp algorithm computes a maximum flow in time $O(m^2n)$ even with arbitrary non-negative capacity values.

 Edmonds-Karp algorithm = Ford-Fulkerson algorithm, where we choose a shortest augmenting path in each step.

Proof:

- From lemma before: $O(m \cdot n)$ augmentation steps
- A shortest augmenting path can be found in time O(m + n) by using a BFS traversal on the positive residual graph G_f^+ .

Other Algorithms

- There are many other algorithms to solve the maximum flow problem, for example:
- Preflow-push algorithm:

[Goldberg,Tarjan 1986]

 $O(m^{+ \circ (1)})$

- Maintains a preflow (\forall nodes: inflow \geq outflow)
- Alg. guarantees: As soon as we have a flow, it is optimal
- Detailed discussion in 2012/13 lecture
- Running time of basic algorithm: $O(m \cdot n^2)$
- Doing steps in the "right" order: $O(n^3)$
- Current best known complexity: $O(\underline{m} \cdot \underline{n})$
 - For graphs with $m \ge n^{1+\epsilon}$ [King,Rao,Tarjan 1992/1994] (for every constant $\epsilon > 0$)
 - For sparse graphs with $m \le n^{16/15-\delta}$

• Best known since 2022: $O(\underline{m \cdot n^{o(1)}})$

- Uses a continuous optimization approach
- Published by Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, Sushant Sachdeva

Fabian Kuhn

[Orlin, 2013]