
Algorithm Theory

Chapter 6
Graph Algorithms

Maximum Flow Applications

Fabian Kuhn

Algorithm Theory Fabian Kuhn 2

Maximum Flow Applications
• Maximum flow has many applications

• Reducing a problem to a max flow problem can even be seen as
an important algorithmic technique

• Examples:
– related network flow problems
– computation of small cuts
– computation of matchings
– computing disjoint paths
– scheduling problems
– assignment problems with some side constraints
– …

Algorithm Theory Fabian Kuhn 3

Undirected Edges and Vertex Capacities
Undirected Edges:
• Undirected edge {𝑢, 𝑣}: add edges 𝑢, 𝑣 and (𝑣, 𝑢) to network

Vertex Capacities:
• Not only edges, but also (or only) nodes have capacities
• Capacity 𝑐! of node 𝑣 ∉ {𝑠, 𝑡}:

𝑓"# 𝑣 = 𝑓$%& 𝑣 ≤ 𝑐!
• Replace node 𝑣 by edge 𝑒! = {𝑣"#, 𝑣$%&}:

𝑣 𝑣!" 𝑣#$%
𝒄𝒗

Algorithm Theory Fabian Kuhn 4

Minimum 𝑠-𝑡 Cut
Given: undirected graph 𝐺 = (𝑉, 𝐸), nodes 𝑠, 𝑡 ∈ 𝑉

𝒔-𝒕 cut: Partition (𝐴, 𝐵) of 𝑉 such that 𝑠 ∈ 𝐴, 𝑡 ∈ 𝐵

Size of cut (𝑨, 𝑩): number of edges crossing the cut

Objective: find 𝑠-𝑡 cut of minimum size
• Create flow network:

– make edges directed:
– edge capacities = 1

• Size of cut in 𝐺 = capacity of cut in flow network

𝑨 𝑩⋮

size of cut = #edges crossing the cut

𝑠 𝑡

Algorithm Theory Fabian Kuhn 5

Edge Connectivity
Definition: A graph 𝐺 = 𝑉, 𝐸 is 𝑘-edge connected for an integer
𝑘 ≥ 1 if the graph 𝐺' = (𝑉, 𝐸 ∖ 𝑋) is connected for every edge set

𝑋 ⊆ 𝐸, 𝑋 ≤ 𝑘 − 1.	

Goal: Compute edge connectivity 𝜆(𝐺) of 𝐺
 (and edge set 𝑋 of size 𝜆(𝐺) that divides 𝐺 into ≥ 2 parts)

• minimum set 𝑋 is a minimum 𝑠-𝑡 cut for some 𝑠, 𝑡 ∈ 𝑉
– Actually for all 𝑠, 𝑡 in different components of 𝐺! = (𝑉, 𝐸 ∖ 𝑋)

• Fix 𝑠, find min 𝑠-𝑡 cut for all 𝑡 ≠ 𝑠 ⟹ running time 𝑂 𝑚𝑛(

𝑨 𝑩⋮

≥ 𝑘

Need to remove ≥ 𝑘
edges to disconnect 𝐺

≔𝜆 𝐺

Edge Connectivity 𝝀 𝑮
max 𝑘 such that 𝐺 is
𝑘-edge connected.

Algorithm Theory Fabian Kuhn 6

Minimum 𝑠-𝑡 Vertex-Cut
Given: undirected graph 𝐺 = (𝑉, 𝐸), nodes 𝑠, 𝑡 ∈ 𝑉

𝒔-𝒕 vertex cut: Set 𝑋 ⊂ 𝑉 such that 𝑠, 𝑡 ∉ 𝑋 and 𝑠 and 𝑡 are in
different components of the sub-graph 𝐺[𝑉 ∖ 𝑋] induced by 𝑉 ∖ 𝑋

Size of vertex cut: |𝑋|

Objective: find 𝑠-𝑡 vertex-cut of minimum size
• Replace undirected edges {𝑢, 𝑣} by (𝑢, 𝑣) and (𝑣, 𝑢)
• Compute max 𝑠-𝑡 flow for edge capacities ∞ and node capacities

𝑐! = 1	for	𝑣 ≠ 𝑠, 𝑡	

• Replace each node 𝑣 by 𝑣"# and 𝑣$%&
• Min edge cut corresponds to min vertex cut in 𝐺

𝑿 𝑡𝑠

∞∞
∞

∞
∞

1

Algorithm Theory Fabian Kuhn 7

Vertex Connectivity
Definition: A graph 𝐺 = 𝑉, 𝐸 is 𝑘-vertex connected for an integer
𝑘 ≥ 1 if the sub-graph 𝐺[𝑉 ∖ 𝑋] induced by 𝑉 ∖ 𝑋 is connected for
every vertex set

𝑋 ⊆ 𝑉, 𝑋 ≤ 𝑘 − 1.	

Goal: Compute vertex connectivity 𝜅(𝐺) of 𝐺
 (and node set 𝑋 of size 𝜅(𝐺) that divides 𝐺 into ≥ 2 parts)

• Compute minimum 𝑠-𝑡 vertex cut for all 𝑠 and all 𝑡 ≠ 𝑠 such that 𝑡
is not a neighbor of 𝑠 ⟹ running time 𝑂 𝑚 ⋅ 𝑛*

𝑿

Need to remove ≥ 𝑘
nodes to disconnect 𝐺

|𝑋| ≥ 𝑘 ≔𝜅 𝐺 Vertex Connectivity 𝜿 𝑮
max 𝑘 such that 𝐺 is
𝑘-vertex connected.

Algorithm Theory Fabian Kuhn 8

Edge-Disjoint Paths
Given: Graph 𝐺 = (𝑉, 𝐸) with nodes 𝑠, 𝑡 ∈ 𝑉

Goal: Find as many edge-disjoint 𝑠-𝑡 paths as possible

Solution:
• Find max 𝑠-𝑡 flow in 𝐺 with edge capacities 𝑐+ = 1 for all 𝑒 ∈ 𝐸

Flow 𝑓 induces 𝑓 edge-disjoint paths:
• Integral capacities à can compute integral max flow 𝑓
• Get 𝑓 edge-disjoint paths by greedily picking them
• Correctness follows from flow conservation 𝑓"# 𝑣 = 𝑓$%&(𝑣)

𝑠 𝑡

Algorithm Theory Fabian Kuhn 9

Vertex-Disjoint Paths
Given: Graph 𝐺 = (𝑉, 𝐸) with nodes 𝑠, 𝑡 ∈ 𝑉

Goal: Find as many internally vertex-disjoint 𝑠-𝑡 paths as possible

Solution:
• Find max 𝑠-𝑡 flow in 𝐺 with node capacities 𝑐! = 1 for all 𝑣 ∈ 𝑉

Flow 𝑓 induces 𝑓 vertex-disjoint paths:
• Integral capacities à can compute integral max flow 𝑓
• Get 𝑓 vertex-disjoint paths by greedily picking them
• Correctness follows from flow conservation 𝑓"# 𝑣 = 𝑓$%&(𝑣)

𝑠 𝑡

Algorithm Theory Fabian Kuhn 10

Menger’s Theorem
Theorem: (edge version)
For every graph 𝐺 = (𝑉, 𝐸) with nodes 𝑠, 𝑡 ∈ 𝑉, the size of the
minimum 𝑠-𝑡 (edge) cut equals the maximum number of pairwise
edge-disjoint paths from 𝑠 to 𝑡.

Theorem: (node version)
For every graph 𝐺 = (𝑉, 𝐸) with non-adjacent nodes 𝑠, 𝑡 ∈ 𝑉, the
size of the minimum 𝑠-𝑡 vertex cut equals the maximum number of
pairwise internally vertex-disjoint paths from 𝑠 to 𝑡.

• Both versions can be seen as a special case of the max flow min
cut theorem

Algorithm Theory Fabian Kuhn 11

Baseball Elimination

• Only wins/losses possible (no ties), winner: team with most wins
• Which teams can still win (as least as many wins as top team)?
• Boston is eliminated (cannot win):

– Boston can get at most 78 wins, New York already has 81 wins

• If for some 𝑖, 𝑗: 𝑤, + 𝑟, < 𝑤- à team 𝑖 is eliminated
• Sufficient condition, but not a necessary one!

Team Wins Losses To Play Against = 𝒓𝒊𝒋
𝒊 𝒘𝒊 ℓ𝒊 𝒓𝒊 NY Balt. T. Bay Tor. Bost.

New York 81 69 12 - 2 5 2 3

Baltimore 79 77 6 2 - 2 1 1

Tampa Bay 79 74 9 5 2 - 1 1

Toronto 76 80 6 2 1 1 - 2

Boston 71 84 7 3 1 1 2 -

Algorithm Theory Fabian Kuhn 12

Baseball Elimination

• Can Toronto still finish first?
• Toronto can get 82 > 81 wins, but:

NY and Tampa have to play 5 more times against each other
à if NY wins two, it gets 83 wins, otherwise, Tampa has 83 wins

• Hence: Toronto cannot finish first
• How about the others? How can we solve this in general?

Team Wins Losses To Play Against = 𝒓𝒊𝒋
𝒊 𝒘𝒊 ℓ𝒊 𝒓𝒊 NY Balt. T. Bay Tor. Bost.

New York 81 69 12 - 2 5 2 3

Baltimore 79 77 6 2 - 2 1 1

Tampa Bay 79 74 9 5 2 - 1 1

Toronto 76 80 6 2 1 1 - 2

Boston 71 84 7 3 1 1 2 -

Algorithm Theory Fabian Kuhn 13

Max Flow Formulation
• Can team 3 finish with most wins?

• Team 3 can finish first iff all source-game edges are saturated

1-2

1-4

1-5

2-4

2-5

4-5
game
nodes

𝒔

1

2

4

5

𝒕

𝒓𝟒,𝟓

𝒓 𝟏,𝟐
∞

∞ team
nodes

𝒘𝟑 + 𝒓𝟑 −𝒘𝟏

𝒘𝟑+
𝒓𝟑−

𝒘𝟓

Remaining number
of games between

the 2 teams

Number of wins team 𝒊 can
have to not beat team 𝟑

Algorithm Theory Fabian Kuhn 14

Reason for Elimination

• Detroit could finish with 49 + 27 = 76 wins

• Consider 𝑅 = {NY, Bal, Bos, Tor}
– Have together already won 𝑤 𝑅 = 278 games
– Must together win at least 𝑟 𝑅 = 27 more games

• On average, teams in 𝑅 win (89:(8
;

= 76.25 games

Team Wins Losses To Play Against = 𝒓𝒊𝒋
𝒊 𝒘𝒊 ℓ𝒊 𝒓𝒊 NY Balt. Bost. Tor. Detr.

New York 75 59 28 - 3 8 7 3

Baltimore 71 63 28 3 - 2 7 4

Boston 69 66 27 8 2 - 0 0

Toronto 63 72 27 7 7 0 - 0

Detroit 49 86 27 3 4 0 0 -

AL East: Aug 30, 1996

Algorithm Theory Fabian Kuhn 15

Reason for Elimination
Team 3 eliminated ⟺ min cut 𝑨, 𝑽 ∖ 𝑨 of cap. < “all blue edges”

1-2

1-4

1-5

2-4

2-5

4-5
game
nodes

𝒔

1

2

4

5

𝒕

𝒓𝟒,𝟓

𝒓 𝟏,𝟐
∞

∞ team
nodes

𝒘𝟑 + 𝒓𝟑 −𝒘𝟏

𝒘𝟑+
𝒓𝟑−

𝒘𝟓

Remaining number
of games between

the 2 teams

Number of wins team 𝒊 can
have to not beat team 𝟑

𝑨
1

2

4

1-2

1-4

2-4

𝐴 contains team nodes 𝑅
with 𝑅 ≠ ∅

𝐴 contains all game nodes
for teams in 𝑅

Algorithm Theory Fabian Kuhn 16

Reason for Elimination
Team 3 eliminated ⟺ min cut 𝑨, 𝑽 ∖ 𝑨 of cap. < “all blue edges”

1-2

1-4

1-5

2-4

2-5

4-5
game
nodes

𝒔

1

2

4

5

𝒕

𝒓𝟒,𝟓

𝒓 𝟏,𝟐
∞

∞ team
nodes

𝒘𝟑 + 𝒓𝟑 −𝒘𝟏

𝒘𝟑+
𝒓𝟑−

𝒘𝟓

Remaining number
of games between

the 2 teams

Number of wins team 𝒊 can
have to not beat team 𝟑

𝑨
1

2

4

1-2

1-4

2-4

𝐴 contains team nodes 𝑅
with 𝑅 ≠ ∅

𝐴 contains all game nodes
for teams in 𝑅

%
!∈#

𝑤$ + 𝑟$ −𝑤! < %
!%&,!,&∈#

𝑟!,&

⇕
1
𝑅 ⋅ %

!∈#

𝑤! + %
!%&,!,&∈#

𝑟!,& > 𝑤$ + 𝑟$

Algorithm Theory Fabian Kuhn 17

Reason for Elimination
Certificate of elimination:

𝑅 ⊆ 𝑋, 𝑤 𝑅 	≔t
,∈=

𝑤, , 𝑟 𝑅 ≔ t
,,-∈=

𝑟,,-

• Team 𝑥 ∈ 𝑋 is eliminated by 𝑅 ⊆ 𝑋 ∖ 𝑥 if

𝑤 𝑅 + 𝑟(𝑅)
|𝑅|

> 𝑤> + 𝑟>.

• If team 𝑥 ∈ 𝑋 is eliminated, there exists 𝑅 ⊆ 𝑋 ∖ 𝑥 such that
team 𝑥 is eliminated by 𝑅.
– 𝑅 can be constructed by looking at a minimum cut

!	 !	

#wins of
nodes in 𝑅

#remaining games
among nodes in 𝑅

Algorithm Theory Fabian Kuhn 18

Circulations with Demands
Given: Directed network with positive edge capacities

Sources & Sinks: Instead of one source and one destination, several
sources that generate flow and several sinks that absorb flow.

Supply & Demand: sources have supply values, sinks demand values

Goal: Compute a flow such that source supplies and sink demands
are exactly satisfied

• The circulation problem is a feasibility rather than a maximization
problem

Algorithm Theory Fabian Kuhn 19

Circulations with Demands: Formally
Given: Directed network 𝐺 = 𝑉, 𝐸 with
• Edge capacities 𝑐+ ≥ 0 for all 𝑒 ∈ 𝐸
• Node demands 𝑑! ∈ ℝ for all 𝑣 ∈ 𝑉

– 𝑑" > 0: node needs flow and therefore is a sink
– 𝑑" < 0: node has a supply of −𝑑" and is therefore a source
– 𝑑" = 0: node is neither a source nor a sink

Flow: Function 𝑓: 𝐸 → ℝ?@ satisfying
• Capacity Conditions: ∀𝑒 ∈ 𝐸: 	 0 ≤ 𝑓 𝑒 ≤ 𝑐+
• Demand Conditions: ∀𝑣 ∈ 𝑉:	 𝑓"# 𝑣 − 𝑓$%& 𝑣 = 𝑑!

Objective: Does a flow 𝑓 satisfying all conditions exist?
 If yes, find such a flow 𝑓.

Algorithm Theory Fabian Kuhn 20

Example

-3 2

-3

4

3 3

2

2 2

1 2

22

2

Algorithm Theory Fabian Kuhn 21

Condition on Demands
Claim: If there exists a feasible circulation with demands 𝑑! for
𝑣 ∈ 𝑉, then

t
!∈A

𝑑! = 0.

Proof:

• ∑!𝑑! = ∑! 𝑓"# 𝑣 − 𝑓$%& 𝑣

• 𝑓(𝑒) of each edge 𝑒 appears twice in the above sum with
different signs à overall sum is 0

Total supply = total demand:

De�ine	𝑫 ≔ t
𝒗:𝒅𝒗E𝟎

−𝒅𝒗= t
𝒗:𝒅𝒗G𝟎

𝒅𝒗

Algorithm Theory Fabian Kuhn 22

Reduction to Maximum Flow
• Add “super-source” 𝑠∗ and “super-sink” 𝑡∗ to network

• valid circulations ⇔ valid 𝑠∗-𝑡∗ flow that saturates all red edges.

𝑺 𝑻
-3

-1

-6
3

2

1

4

0 0

0

0
0

0

𝒔∗ 𝒕∗
𝟑
𝟏

𝟔

𝟏
𝟒
𝟐
𝟑

𝑠∗ supplies
sources

with flow

𝑡∗ siphons
flow out
of sinks

Algorithm Theory Fabian Kuhn 23

Example

-3 2

-3

4

3 3

2

2 2

1 2

22

2

𝒔∗

𝒕∗

3

3

2

4

3

3

2

4

Algorithm Theory Fabian Kuhn 24

Formally…
Reduction: Get graph 𝐺I from graph as follows
• Node set of 𝐺I is 𝑉 ∪ 𝑠∗, 𝑡∗

• Edge set is 𝐸 and edges
– (𝑠∗, 𝑣) for all 𝑣 with 𝑑" < 0, capacity of edge is −𝑑"
– (𝑣, 𝑡∗) for all 𝑣 with 𝑑" > 0, capacity of edge is 𝑑"

Observations:
• Capacity of min 𝑠∗-𝑡∗ cut is at most 𝐷 (e.g., the cut 𝑠∗, 𝑉 ∪ {𝑡∗)
• A feasible circulation on 𝐺 can be turned into a feasible flow of

value 𝐷 of 𝐺′ by saturating all (𝑠∗, 𝑣) and (𝑣, 𝑡∗) edges.
• Any flow of 𝐺′ of value 𝐷 induces a feasible circulation on 𝐺

– 𝑠∗, 𝑣 and 𝑣, 𝑡∗ edges are saturated
– By removing these edges, we get exactly the demand constraints

Algorithm Theory Fabian Kuhn 25

Circulation with Demands
Theorem: There is a feasible circulation with demands 𝑑!, 𝑣 ∈ 𝑉
on graph 𝐺 if and only if there is a flow of value 𝐷 on 𝐺′.

• If all capacities and demands are integers, there is a valid
integer circulation (if there is a valid circulation)

The max flow min cut theorem also implies the following:

Theorem: The graph 𝐺 has a feasible circulation with demands
𝑑!, 𝑣 ∈ 𝑉 if and only if the sum of all demands is zero and for all
cuts (𝐴, 𝐵),

t
!∈J

𝑑! ≤ 𝑐(𝐴, 𝐵) .

Algorithm Theory Fabian Kuhn 26

Circulation: Demands and Lower Bounds
Given: Directed network 𝐺 = 𝑉, 𝐸 with
• Edge capacities 𝑐+ > 0 and lower bounds 𝟎 ≤ ℓ𝒆 ≤ 𝒄𝒆 for 𝒆 ∈ 𝑬
• Node demands 𝑑! ∈ ℝ for all 𝑣 ∈ 𝑉

– 𝑑" > 0: node needs flow and therefore is a sink
– 𝑑" < 0: node has a supply of −𝑑" and is therefore a source
– 𝑑" = 0: node is neither a source nor a sink

Flow: Function 𝑓: 𝐸 → ℝ?@ satisfying
• Capacity Conditions: ∀𝑒 ∈ 𝐸:	 ℓ𝒆 ≤ 𝒇 𝒆 ≤ 𝒄𝒆
• Demand Conditions: ∀𝑣 ∈ 𝑉:	 𝑓"# 𝑣 − 𝑓$%& 𝑣 = 𝑑!

Objective: Does a flow 𝑓 satisfying all conditions exist?
 If yes, find such a flow 𝑓.

Algorithm Theory Fabian Kuhn 27

Solution Idea
• Define initial circulation 𝑓@ 𝑒 = ℓ+

Satisfies capacity constraints: ∀𝑒 ∈ 𝐸: ℓ+ ≤ 𝑓@ 𝑒 ≤ 𝑐+

• Define

𝐿! ≔ 𝑓@"# 𝑣 − 𝑓@$%& 𝑣 = t
+	"#&$!

ℓ+ − t
+	$%&	$M	!

ℓ+

• If 𝐿! = 𝑑!, demand condition is satisfied at 𝑣 by 𝑓@, otherwise,
we need to superimpose another circulation 𝑓N such that

𝑑!I ≔ 𝑓N"# 𝑣 − 𝑓N$%& 𝑣 = 𝑑! − 𝐿!

• Remaining capacity of edge 𝑒: 𝑐+I ≔ 𝑐+ − ℓ+

• We get a circulation problem with new demands 𝑑!I , new
capacities 𝑐+I , and no lower bounds

Algorithm Theory Fabian Kuhn 28

Eliminating a Lower Bound: Example

-3 2

-3

4

3 3

2

2 2

Lower bound of 2

-5 2

-1

4

1 3

2

2 2

Algorithm Theory Fabian Kuhn 29

Reduce to Problem Without Lower Bounds
Graph 𝑮 = (𝑽, 𝑬):
• Capacity: For each edge 𝑒 ∈ 𝐸: ℓ+ ≤ 𝑓 𝑒 ≤ 𝑐+
• Demand: For each node 𝑣 ∈ 𝑉: 𝑓"# 𝑣 − 𝑓$%& 𝑣 = 𝑑!

Model lower bounds with supplies & demands:

Create Network 𝑮′ (without lower bounds):
• For each edge 𝑒 ∈ 𝐸: 𝑐+I = 𝑐+ − ℓ+
• For each node 𝑣 ∈ 𝑉: 𝑑!I = 𝑑! − 𝐿!

𝑢 𝑣
ℓ𝒆 ≤ 𝒄𝒆
Flow: ℓ𝒆

Algorithm Theory Fabian Kuhn 30

Circulation: Demands and Lower Bounds
Theorem: There is a feasible circulation in 𝐺 (with lower bounds) if
and only if there is feasible circulation in 𝐺′ (without lower bounds).

• Given circulation 𝑓′ in 𝐺′, 𝑓 𝑒 = 𝑓I 𝑒 + ℓ+ is circulation in 𝐺
– The capacity constraints are satisfied because 𝑓$ 𝑒 ≤ 𝑐% − ℓ%
– Demand conditions:

𝑓&' 𝑣 − 𝑓()* 𝑣 = E
%	&'*("

ℓ% + 𝑓$ 𝑒 − E
%	()*	(,	"

ℓ% + 𝑓$ 𝑒
	

	 = 𝐿" + 𝑑" − 𝐿" = 𝑑"
• Given circulation 𝑓 in 𝐺, 𝑓′(𝑒) = 𝑓 𝑒 − ℓ+ is circulation in 𝐺′

– The capacity constraints are satisfied because ℓ% ≤ 𝑓 𝑒 ≤ 𝑐%
– Demand conditions:

𝑓′&' 𝑣 − 𝑓$()* 𝑣 = E
%	&'*("

𝑓 𝑒 − ℓ% − E
%	()*	(,	"

𝑓 𝑒 − ℓ%
	

	 = 𝑑" − 𝐿"

Algorithm Theory Fabian Kuhn 31

Integrality
Theorem: Consider a circulation problem with integral capacities,
flow lower bounds, and node demands. If the problem is feasible,
then it also has an integral solution.

Proof:
• Graph 𝐺′ has only integral capacities and demands
• Thus, the flow network used in the reduction to solve

circulation with demands and no lower bounds has only
integral capacities

• The theorem now follows because a max flow problem with
integral capacities also has an optimal integral solution

• It also follows that with the max flow algorithms we studied,
we get an integral feasible circulation solution.

Algorithm Theory Fabian Kuhn 32

Matrix Rounding
• Given: 𝑝×𝑞 matrix 𝐷 = {𝑑,,-} of real numbers
• row 𝒊 sum: 𝑎, = ∑- 𝑑,,-, column 𝒋 sum: 𝑏- = ∑, 𝑑,,-
• Goal: Round each 𝑑,,-, as well as 𝑎, and 𝑏- up or down to the

next integer so that the sum of rounded elements in each row
(column) equals the rounded row (column) sum

• Original application: publishing census data

Example:

3.14 6.80 7.30 17.24
9.60 2.40 0.70 12.70
3.60 1.20 6.50 11.30
16.34 10.40 14.50

3 7 7 17
10 2 1 13
3 1 7 11
16 10 15

original data possible rounding

Algorithm Theory Fabian Kuhn 33

Matrix Rounding
Theorem: For any matrix, there exists a feasible rounding.

Remark: Just rounding to the nearest integer doesn’t work

0.35 0.35 0.35 1.05
0.55 0.55 0.55 1.65
0.90 0.90 0.90

0 0 0 0
1 1 1 3
1 1 1

0 0 1 1
1 1 0 2
1 1 1

original data

feasible roundingrounding to nearest integer

Algorithm Theory Fabian Kuhn 34

Reduction to Circulation

3.14 6.80 7.30 17.24
9.60 2.40 0.70 12.70
3.60 1.20 6.50 11.30
16.34 10.40 14.50

𝒓𝟏

𝒓𝟐

rows:

𝒓𝟑

𝒄𝟏

𝒄𝟐

𝒄𝟑

columns:
3,4
6,7

7,8

2,3𝑠 𝑡12,13

17,18

11,12

16,17

10,11

14,15

0,∞

Matrix elements and row/column sums
give a feasible circulation that satisfies
all lower bound, capacity, and demand
constraints

all demands 𝑑! = 0

Algorithm Theory Fabian Kuhn 35

Matrix Rounding
Theorem: For any matrix, there exists a feasible rounding.

Proof:
• The matrix entries 𝑑,,- and the row and column sums 𝑎, and 𝑏-

give a feasible circulation for the constructed network

• Every feasible circulation gives matrix entries with corresponding
row and column sums (follows from demand constraints)

• Because all demands, capacities, and flow lower bounds are
integral, there is an integral solution to the circulation problem

à gives a feasible rounding!

Algorithm Theory Fabian Kuhn 36

Matching

Algorithm Theory Fabian Kuhn 37

Gifts-Children Graph
• Which child likes which gift can be represented by a graph

Algorithm Theory Fabian Kuhn 38

Matching
Matching: Set of pairwise non-incident edges

Maximal Matching: A matching s.t. no more edges can be added

Maximum Matching: A matching of maximum possible size

Perfect Matching: Matching of size ⁄X ((every node is matched)

Algorithm Theory Fabian Kuhn 39

Bipartite Graph
Definition: A graph 𝐺 = 𝑉, 𝐸 is called bipartite iff its node set
can be partitioned into two parts 𝑉 = 𝑉N ∪ 𝑉(such that for each
edge u, v ∈ 𝐸,

𝑢, 𝑣 ∩ 𝑉N = 1.

• Thus, edges are only between the two parts

⋅

𝑉J 𝑉K
𝐸

Algorithm Theory Fabian Kuhn 40

Santa’s Problem
Maximum Matching in Bipartite Graphs:

Every child can get a gift
iff there is a matching
of size #children

Clearly, every matching
is at most as big

If #children = #gifts,
there is a solution iff
there is a perfect matching

Algorithm Theory Fabian Kuhn 41

Reducing to Maximum Flow
• Like edge-disjoint paths…

all capacities are 𝟏

𝒔 𝒕

Algorithm Theory Fabian Kuhn 42

Reducing to Maximum Flow
Theorem: Every integer solution to the max flow problem on the
constructed graph induces a maximum bipartite matching of 𝐺.

Proof:
1. An integer flow 𝑓 of value |𝑓| induces a matching of size |𝑓|

– Left nodes (gifts) have incoming capacity 1
– Right nodes (children) have outgoing capacity 1
– Left and right nodes are incident to ≤ 1 edge 𝑒 of 𝐺 with 𝑓 𝑒 = 1

2. A matching of size 𝑘 implies a flow 𝑓 of value 𝑓 = 𝑘
– For each edge {𝑢, 𝑣} of the matching:

𝑓 𝑠, 𝑢 = 𝑓 𝑢, 𝑣 = 𝑓 𝑣, 𝑡 = 1

– All other flow values are 0

Algorithm Theory Fabian Kuhn 43

Running Time of Max. Bipartite Matching
Theorem: A maximum matching 𝑀∗ of a bipartite graph can be
computed in time 𝑂 𝑚 ⋅ 𝑀∗ = 𝑂 𝑚 ⋅ 𝑛 .

• The problem can be reduced to a maximum flow problem on
a flow network with 𝑂 𝑚 edges and all capacities = 1

• The Ford-Fulkerson algorithm solves the maximum flow
problem in time 𝑂 𝑚 ⋅ 𝐶 , where 𝐶 is the value of the
maximum flow (i.e., 𝐶 = 𝑀∗).

• A maximum matching 𝑀∗ has size 𝑀∗ ≤ ⁄X (= 𝑂 𝑛 .

Algorithm Theory Fabian Kuhn 44

Perfect Matching?
• There can only be a perfect matching if both sides of the

partition have size ⁄X (.

• There is no perfect matching, iff there is an 𝑠-𝑡 cut of
size < ⁄X (in the flow network.

§𝑛 2 §𝑛 2

𝑡𝑠

Algorithm Theory Fabian Kuhn 45

𝑠-𝑡 Cuts

Partition (𝐴, 𝐵) of node set such that 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵

• If 𝑣, ∈ 𝐴: edge (𝑣,, 𝑡) is in cut (𝐴, 𝐵)

• If 𝑢, ∈ 𝐵: edge (𝑠, 𝑢,) is in cut (𝐴, 𝐵)

• Otherwise (if 𝑢, ∈ 𝐴, 𝑣, ∈ 𝐵), all edges from 𝑢, to some 𝑣- ∈
𝐵 are in cut (𝐴, 𝐵)

𝑢#

𝑢$

𝑢%

𝑢&

𝑢'

𝑢(

𝑣#

𝑣$

𝑣%

𝑣&

𝑣'

𝑣(
𝑈 𝑉

𝑡𝑠

Algorithm Theory Fabian Kuhn 46

Hall’s Theorem
Theorem: A bipartite graph 𝐺 = (𝑈 ∪ 𝑉, 𝐸) for which 𝑈 = |𝑉|
has a perfect matching if and only if

∀𝑼I ⊆ 𝑼: 𝑵 𝑼I ≥ 𝑼I ,
where 𝑁 𝑈I ⊆ 𝑉 is the set of neighbors of nodes in 𝑈′.

Proof: No perfect matching ⟺ some 𝑠-𝑡 cut has capacity < ⁄𝑛 2
1. Assume there is 𝑈′ for which 𝑁 𝑈I < |𝑈I|:

𝑡𝑠

𝑼′ 𝑵(𝑼O)

Algorithm Theory Fabian Kuhn 47

Hall’s Theorem
Theorem: A bipartite graph 𝐺 = (𝑈 ∪ 𝑉, 𝐸) for which 𝑈 = |𝑉|
has a perfect matching if and only if

∀𝑼I ⊆ 𝑼: 𝑵 𝑼I ≥ 𝑼I ,
where 𝑁 𝑈I ⊆ 𝑉 is the set of neighbors of nodes in 𝑈′.

Proof: No perfect matching ⟺ some 𝑠-𝑡 cut has capacity < ⁄𝑛 2
2. Assume that there is a cut (𝐴, 𝐵) of capacity < ⁄𝑛 2

𝑡𝑠

𝑼′

𝒙

𝒚𝒛

𝒙 + 𝒚 + 𝒛 <
𝒏
𝟐

|𝑵 𝑼O | ≤ 𝒚 + 𝒛

𝑼′ =
𝒏
𝟐
− 𝒙

Algorithm Theory Fabian Kuhn 48

Hall’s Theorem
Theorem: A bipartite graph 𝐺 = (𝑈 ∪ 𝑉, 𝐸) for which 𝑈 = |𝑉|
has a perfect matching if and only if

∀𝑼I ⊆ 𝑼: 𝑵 𝑼I ≥ 𝑼I ,
where 𝑁 𝑈I ⊆ 𝑉 is the set of neighbors of nodes in 𝑈′.

Proof: No perfect matching ⟺ some 𝑠-𝑡 cut has capacity < 𝑛
2. Assume that there is a cut (𝐴, 𝐵) of capacity < 𝑛

𝒙 + 𝒚 + 𝒛 <
𝒏
𝟐

|𝑵 𝑼O | ≤ 𝒚 + 𝒛

𝑼′ =
𝒏
𝟐
− 𝒙

𝒚 + 𝒛 <
𝒏
𝟐
− 𝒙

𝒚 + 𝒛 < 𝑼O

𝑵 𝑼′ < 𝑼O

