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Maximum Flow Applications
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 Maximum flow has many applications

* Reducing a problem to a max flow problem can even be seen as
an important algorithmic technique

 Examples:
— related network flow problems
— computation of small cuts
— computation of matchings
— computing disjoint paths
— scheduling problems
— assignment problems with some side constraints
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Undirected Edges and Vertex Capacities
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Undirected Edges:
* Undirected edge {u, v}: add edges (u, v) and (v, u) to network

Vertex Capacities:
* Not only edges, but also (or only) nodes have capacities

* Capacity ¢, of node v & {s, t}:
fin@) = £ ) < c

* Replace node v by edge e, = {Vip, Vout}:
e
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Minimum s-t Cut
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Given: undirected graph ¢ = (V,E), nodes s, t €V
s-t cut: Partition (4,B) of Vsuchthats € A,t € B

Size of cut (4, B): number of edges crossing the cut

size of cut = #edges crossing the cut
Objective: find s-t cut of minimum size

e (Create flow network:

— make edges directed: O O CQ

— edge capacities = 1

e Size of cutin G = capacity of cut in flow network
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Edge Connectivity
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Definition: A graph G = (V,E) is k-edge connected for an integer
k = 1if the graph Gy = (V,E \ X) is connected for every edge set

XCE|X|<k-1. Need to remove > k
edges to disconnect G
A : K B> Edge Connectivity A(G)
max k such that G is
>k = A(G) k-edge connected.

Goal: Compute edge connectivity A(G) of G
(and edge set X of size A(G) that divides G into = 2 parts)

e minimum set X is a minimum s-t cut forsome s,t € I/
— Actually for all s, t in different components of Gy = (V,E \ X)

* Fix s, find min s-t cut for all t # s = running time 0(mn?)
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Minimum s-t Vertex-Cut
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Given: undirected graph ¢ = (V,E), nodes s, t € V

s-t vertex cut: Set X € V suchthats,t € X and sand t are in
different components of the sub-graph G[V \ X] induced by V \ X

Size of vertex cut: | X| @ij X _j:@

Objective: find s-t vertex-cut of minimum size

* Replace undirected edges {u, v} by (u, v) and (v, u)
 Compute max s-t flow for edge capacities co and node capacities

c, = 1lforv #s,t >@< w
 Replace each node v by v;, and Vg

* Min edge cut corresponds to min vertex cutin G
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Vertex Connectivity
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Definition: A graph G = (V, E) is k-vertex connected for an integer
k = 1 if the sub-graph G[V \ X] induced by V' \ X is connected for
every vertex set
XQV,|X|Sk—1 Need to remove > k
nodes to disconnect G

1X| = k = k(G) Vertex Connectivity k(G)

max k such that G is
@ k-vertex connected.

Goal: Compute vertex connectivity k(G) of G
(and node set X of size k(G) that divides G into = 2 parts)

X

 Compute minimum s-t vertex cut for all s and all t # s such that ¢t
is not a neighbor of s = running time O(m - n?®)
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Edge-Disjoint Paths
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Given: Graph ¢ = (V,E) withnodes s, t € V

Goal: Find as many edge-disjoint s-t paths as possible

YR\
T
Solution:

* Find max s-t flow in G with edge capacitiesc, = 1 foralle € E

Flow f induces |f| edge-disjoint paths:
* Integral capacities = can compute integral max flow f
* Get |f| edge-disjoint paths by greedily picking them

« Correctness follows from flow conservation f'(v) = fOUt(v)
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Vertex-Disjoint Paths

UNI
|

FREIBURG

Given: Graph ¢ = (V,E) withnodes s, t € V

Goal: Find as many internally vertex-disjoint s-t paths as possible

( — )—

. N\

Solution:

* Find max s-t flow in G with node capacitiesc, = 1 forallv eV

Flow f induces |f| vertex-disjoint paths:
* Integral capacities = can compute integral max flow f
* Get |f| vertex-disjoint paths by greedily picking them

e Correctness follows from flow conservation f1%(v) = fout(v)
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Menger’s Theorem
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Theorem: (edge version)

For every graph G = (V, E) with nodes s,t € V, the size of the
minimum s-t (edge) cut equals the maximum number of pairwise
edge-disjoint paths from s to t.

Theorem: (node version)

For every graph G = (V, E') with non-adjacent nodes s,t € I/, the
size of the minimum s-t vertex cut equals the maximum number of
pairwise internally vertex-disjoint paths from s to t.

* Both versions can be seen as a special case of the max flow min
cut theorem
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Baseball Elimination :

Team Wins Losses To Play Against = 1;;
[ w; L; T; NY Balt. T. Bay
New York 81 69 12 - 2 5 2 3
Baltimore 79 77 6 2 - 2 1 1
Tampa Bay 79 74 9 5 2 - 1 1
Toronto 76 80 6 2 1 1 - 2
Boston 71 384 7 3 1 1 2 -

* Only wins/losses possible (no ties), winner: team with most wins
 Which teams can still win (as least as many wins as top team)?
* Boston is eliminated (cannot win):

— Boston can get at most 78 wins, New York already has 81 wins
* Ifforsomei,j: w; +1; <w; 2 teamiis eliminated
e Sufficient condition, but not a necessary one!
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Baseball Elimination

Team Wins Losses To Play Against = 1;;
[ w; L; T; NY Balt. T. Bay
New York 81 69 12 - 2 5 2 3
Baltimore 79 77 6 2 - 2 1 1
Tampa Bay 79 74 9 5 2 - 1 1
Toronto 76 80 6 2 1 1 - 2
Boston 71 384 7 3 1 1 2 -

e (Can Toronto still finish first?

 Toronto can get 82 > 81 wins, but:
NY and Tampa have to play 5 more times against each other
- if NY wins two, it gets 83 wins, otherwise, Tampa has 83 wins

* Hence: Toronto cannot finish first
* How about the others? How can we solve this in general?
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Max Flow Formulation
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e (Canteam 3 finish with most wins?

Remaining number team
of games between
the 2 teams

Number of wins team i can

game nodes have to not beat team 3
nodes

* Team 3 can finish first iff all source-game edges are saturated
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Reason for Elimination

AL East: Aug 30, 1996
Team Wins Losses To Play Against = 1;;
[ w; L; T; NY Balt. Bost.  Tor.
New York 75 59 28 - 3 8 7 3
Baltimore 71 63 28 3 - 2 7 4
Boston 69 66 27 8 2 - 0 0
Toronto 63 72 27 7 7 0 - 0
Detroit 49 86 27 3 4 0 0 -

 Detroit could finish with 49 + 27 = 76 wins
* Consider R = {NY, Bal, Bos, Tor}

— Have together already won w(R) = 278 games

— Must together win at least ¥(R) = 27 more games

* On average, teamsin R win

Algorithm Theory
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Reason for Elimination
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Team 3 eliminated < min cut (4,V \ A) of cap. < “all blue edges”

A contains all game nodes A contains team nodes R
for teamsin R withR = @
1-2 CO
<
3 ~ w
1
—~ W5
T3
W3 o
Remaining number 4-5 00 team Number of wins team i can
of games between game nodes have to not beat team 3

the 2 teams
nodes
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Reason for Elimination
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Team 3 eliminated < min cut (4,V \ A) of cap. < “all blue edges”

A contains all game nodes A contains team nodes R
for teamsin R withR = @

:E:(Mk;4'7é"'“ﬁ) < :E: Tij

iER i<j,ijER

)

Wi rij|>ws+r
Remaining nt |R| (Z g z lJ) 3 T13

of games bet LS LLJER
the 2 teams

)er of wins team i can
____2tonot beat team 3

nodes
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Reason for Elimination
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Certificate of elimination:

RCX, w(R) := zwi, r(R) = 2 1i,j

LER [,JER
w w
#wins of H#remaining games
nodesin R among nodes in R

« Teamx € X iseliminatedby R € X \ {x}if

w(R) +r(R)
R|

> Wy T Ty

* |fteam x € X is eliminated, there exists R € X \ {x} such that
team x is eliminated by R.
— R can be constructed by looking at a minimum cut
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Circulations with Demands
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Given: Directed network with positive edge capacities

Sources & Sinks: Instead of one source and one destination, several
sources that generate flow and several sinks that absorb flow.

Supply & Demand: sources have supply values, sinks demand values

Goal: Compute a flow such that source supplies and sink demands
are exactly satisfied

* The circulation problem is a feasibility rather than a maximization
problem
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Circulations with Demands: Formally
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Given: Directed network G = (V, E) with
* Edge capacitiesc, = 0 foralle € E

* Nodedemandsd, € Rforallv eV
— d, > 0: node needs flow and therefore is a sink

— d, < 0: node has a supply of —d,, and is therefore a source

— d, = 0: node is neither a source nor a sink

Flow: Function f: E = R, satisfying
* Capacity Conditions:Ve € E: 0 < f(e) < c,

 Demand Conditions: Vv € V: fI'(v) — fOU(p) = d,

Objective: Does a flow f satisfying all conditions exist?

Algorithm Theory

If yes, find such a flow f.

Fabian Kuhn
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Example
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Condition on Demands
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Claim: If there exists a feasible circulation with demands d,, for

v €V, then
Zdv — 0.

vev
Proof:

¢ Tpdy = Ty (FW) - W)
* f(e) of each edge e appears twice in the above sum with
different signs = overall sum is 0

Total supply = total demand:

Define D := z —d,= z d,

v:.d,<0 v:d,>0

Algorithm Theory Fabian Kuhn 21



Reduction to Maximum Flow
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e Add “super-source” s* and “super-sink” t* to network

s” supplies t* siphons
sources flow out
with flow of sinks

 valid circulations < valid s*-t™ flow that saturates all red edges.
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Example
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Formally...
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Reduction: Get graph G’ from graph as follows
* Nodesetof G'isV U {s*, t*}

 Edgesetis E and edges
— (s%,v) forall v with d,, < 0, capacity of edge is —d,,
— (v, t") for all v with d, > 0, capacity of edge is d,,

Observations:

 Capacity of min s*-t* cut is at most D (e.g., the cut (s*,V U {t*})

* A feasible circulation on G can be turned into a feasible flow of
value D of G’ by saturating all (s*, v) and (v, t*) edges.

« Any flow of G’ of value D induces a feasible circulation on G

— (s*,v) and (v, t*) edges are saturated
— By removing these edges, we get exactly the demand constraints
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Circulation with Demands
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Theorem: There is a feasible circulation with demands d,,, v € IV
on graph G if and only if there is a flow of value D on G'.

* If all capacities and demands are integers, there is a valid
integer circulation (if there is a valid circulation)

The max flow min cut theorem also implies the following:

Theorem: The graph G has a feasible circulation with demands

d,, v € V if and only if the sum of all demands is zero and for all
cuts (4, B),

Z d, < c(A,B).

VEB
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Circulation: Demands and Lower Bounds .
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Given: Directed network G = (V, E) with
* Edge capacities ¢, > 0 and lower bounds 0 < ¢, < c,fore € E

* Nodedemandsd, € Rforallv eV

— d, > 0: node needs flow and therefore is a sink
— d, < 0: node has a supply of —d,, and is therefore a source
— d, = 0: node is neither a source nor a sink

Flow: Function f: E = R, satisfying
* Capacity Conditions:Ve € E: ¥, < f(e) < c,
 Demand Conditions: Vv € V:  fI'(v) — fOU(p) = d,

Objective: Does a flow f satisfying all conditions exist?
If yes, find such a flow f.
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Solution Idea
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 Define initial circulation fy(e) = 4,
Satisfies capacity constraints: Ve € E: ¥, < f,(e) < c,

 Define
Ly = ') = @) = ) le= ) e
e intov e out of v

* If L, = d,, demand condition is satisfied at v by f,, otherwise,
we need to superimpose another circulation f; such that

dy = fi*(v) — ;W) = dy — Ly
* Remaining capacity of edge e: ¢, :=c, — ¥,

* We get a circulation problem with new demands d;,, new
capacities c,, and no lower bounds
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Eliminating a Lower Bound: Example
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Lower bound of 2

A
A
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Reduce to Problem Without Lower Bounds _

Graph G = (V,E):
* Capacity: Foreachedgee € E: ¥, < f(e) < c,
« Demand: For each node v € V: fI?(v) — fOUu(v) = d,,

Model lower bounds with supplies & demands:

W—=C )

Flow: £,

Create Network G’ (without lower bounds):
 Foreachedgee€E:c,=c, — ¥,
 Foreachnodev €eV:d,=d,— L,
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Circulation: Demands and Lower Bounds  _:

o T

Theorem: There is a feasible circulation in G (with lower bounds) if
and only if there is feasible circulation in G’ (without lower bounds).

 Given circulation f"in G', f(e) = f'(e) + ¢, is circulation in G
— The capacity constraints are satisfied because f'(e) < ¢, — ¥,
— Demand conditions:

fin(v) _fout(v) — 2 ({e + f’(e)) — z (fe + f,(e))

eintov e out of v

=Ly, + (dy — Ly) = d,
 Given circulation fin G, f'(e) = f(e) — £, is circulation in G’
— The capacity constraints are satisfied because £, < f(e) < c,
— Demand conditions:

f/in(v) . flout(v) — 2 (f (e) — fe) — z (f (e) - fe)

e intov e out of v
— dv — L,
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Integrality
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Theorem: Consider a circulation problem with integral capacities,
flow lower bounds, and node demands. If the problem is feasible,
then it also has an integral solution.

Proof:

* Graph G' has only integral capacities and demands

* Thus, the flow network used in the reduction to solve
circulation with demands and no lower bounds has only
integral capacities

* The theorem now follows because a max flow problem with
integral capacities also has an optimal integral solution

* It also follows that with the max flow algorithms we studied,
we get an integral feasible circulation solution.
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Matrix Rounding

* Given: pXq matrix D = {d; ;} of real numbers
* rowisum:q; =) ;d;;, columnjsum:b; =),;d,;;
* Goal: Round each d; ;, as well as a; and b; up or down to the

next integer so that the sum of rounded elements in each row
(column) equals the rounded row (column) sum

* Original application: publishing census data

Example:

3.14 | 6.80 | 7.30
9.60 | 2.40 | 0.70
3.60 | 1.20

original data possible rounding
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Matrix Rounding
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Theorem: For any matrix, there exists a feasible rounding.

Remark: Just rounding to the nearest integer doesn’t work

original data

rounding to nearest integer feasible rounding
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Reduction to Circulation
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Matrix elements and row/column sums
give a feasible circulation that satisfies

all lower bound, capacity, and demand

constraints

columns:

all demandsd, =0
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Matrix Rounding
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Theorem: For any matrix, there exists a feasible rounding.

Proof:

* The matrix entries d; ; and the row and column sums a; and b;
give a feasible circulation for the constructed network

* Every feasible circulation gives matrix entries with corresponding
row and column sums (follows from demand constraints)

* Because all demands, capacities, and flow lower bounds are
integral, there is an integral solution to the circulation problem

- gives a feasible rounding!
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Gifts-Children Graph
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* Which child likes which gift can be represented by a graph
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Matching: Set of pairwise non-incident edges

Maximal Matching: A matching s.t. no more edges can be added

Maximum Matching: A matching of maximum possible size

Perfect Matching: Matching of size */, (every node is matched)
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Bipartite Graph

Definition: A graph G = (V, E) is called bipartite iff its node set
can be partitioned into two parts IV = V; UV, such that for each

edge {u,v} € E,
|{u, v} N V1| = 1.

* Thus, edges are only between the two parts

O

E
Vi V
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Santa’s Problem

Maximum Matching in Bipartite Graphs:

Every child can get a gift
iff there is a matching
of size #children

® & ') K Fi) E“hé

Clearly, every matching
is at most as big

If #children = #gifts,
there is a solution iff
there is a perfect matching

@]

[ 3
&

BH \
| g
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Reducing to Maximum Flow
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* Like edge-disjoint paths...

all capacities are 1

Algorithm Theory Fabian Kuhn
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Reducing to Maximum Flow
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Theorem: Every integer solution to the max flow problem on the
constructed graph induces a maximum bipartite matching of G.

Proof:

1. Aninteger flow f of value |f| induces a matching of size | f|
— Left nodes (gifts) have incoming capacity 1
— Right nodes (children) have outgoing capacity 1
— Left and right nodes are incident to < 1 edge e of G with f(e) =1

2. A matching of size k implies a flow f of value |f| = k
—  For each edge {u, v} of the matching:

f(sw)=f((wv)=f(w)=1

— All other flow values are 0
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Running Time of Max. Bipartite Matching .
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Theorem: A maximum matching M™ of a bipartite graph can be
computed in time O(m - |M*|) = O(m - n).

* The problem can be reduced to a maximum flow problem on

a flow network with O(m) edges and all capacities = 1

* The Ford-Fulkerson algorithm solves the maximum flow
problem in time O(m - C), where C is the value of the
maximum flow (i.e., C = |[M*|).

* A maximum matching M™* has size |M*| </, = 0(n).
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Perfect Matching?
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* There can only be a perfect matching if both sides of the
partition have size /,.

 There is no perfect matching, iff there is an s-t cut of
size < ™/, in the flow network.

O
e "/
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s-t Cuts
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Uuq (%1

— < (%)
‘

s t
\us /‘—‘ g

U v
Partition (4, B) of node setsuchthats € Aandt € B

 Ifv; € A:edge (v;,t)isincut (4,B)
* Ifu; € B:edge (s,u;)isincut (4, B)

* Otherwise (if u; € A, v; € B), all edges from u; to some v; €
B areincut (4,B)
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Hall’s Theorem

UNI
FREIBURG

Theorem: A bipartite graph G = (U UV, E) for which |U| = |V|
has a perfect matching if and only if

vU' C U:|N(U)| = U],
where N(U') € V is the set of neighbors of nodes in U'.

Proof: No perfect matching & some s-t cut has capacity < n/2
1. Assume there is U’ for which |[N(U")| < |U’|:

U’ N(U’)
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Hall’s Theorem
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Theorem: A bipartite graph G = (U UV, E) for which |U| = |V|
has a perfect matching if and only if

vU' C U:|N(U)| = U],
where N(U') € V is the set of neighbors of nodes in U'.

Proof: No perfect matching & some s-t cut has capacity < n/2

2. Assume that there

Algorithm Theory

is a cut (A4, B) of capacity < n/2

<
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Hall’s Theorem
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Theorem: A bipartite graph G = (U UV, E) for which |U| = |V|
has a perfect matching if and only if

vU' C U:|N(U)| = U],
where N(U') € V is the set of neighbors of nodes in U'.

Proof: No perfect matching < some s-t cut has capacity < n
2. Assume that thereis a cut (4, B) of capacity < n

n n
x+y+z<§ — y+z<E—x
¢
n
|U’|=E—x == y+z<|U'|

U

INU)|sy+z = [NWU)|<|U
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