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Maximum Flow Applications
• Maximum flow has many applications

• Reducing a problem to a max flow problem can even be seen as 
an important algorithmic technique

• Examples:
– related network flow problems
– computation of small cuts
– computation of matchings
– computing disjoint paths
– scheduling problems
– assignment problems with some side constraints
– …
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Undirected Edges and Vertex Capacities
Undirected Edges:
• Undirected edge {𝑢, 𝑣}: add edges 𝑢, 𝑣  and (𝑣, 𝑢) to network

Vertex Capacities:
• Not only edges, but also (or only) nodes have capacities
• Capacity 𝑐! of node 𝑣 ∉ {𝑠, 𝑡}:

𝑓"# 𝑣 = 𝑓$%& 𝑣 ≤ 𝑐!
• Replace node 𝑣 by edge 𝑒! = {𝑣"#, 𝑣$%&}:

𝑣 𝑣!" 𝑣#$%
𝒄𝒗
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Minimum 𝑠-𝑡 Cut
Given: undirected graph 𝐺 = (𝑉, 𝐸), nodes 𝑠, 𝑡 ∈ 𝑉

𝒔-𝒕 cut: Partition (𝐴, 𝐵) of 𝑉 such that 𝑠 ∈ 𝐴, 𝑡 ∈ 𝐵

Size of cut (𝑨, 𝑩): number of edges crossing the cut

Objective: find 𝑠-𝑡 cut of minimum size
• Create flow network:

– make edges directed:
– edge capacities = 1

• Size of cut in 𝐺 = capacity of cut in flow network 

𝑨 𝑩⋮

size of cut = #edges crossing the cut

𝑠 𝑡
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Edge Connectivity
Definition: A graph 𝐺 = 𝑉, 𝐸  is 𝑘-edge connected for an integer 
𝑘 ≥ 1 if the graph 𝐺' = (𝑉, 𝐸 ∖ 𝑋) is connected for every edge set

𝑋 ⊆ 𝐸, 𝑋 ≤ 𝑘 − 1.	

Goal: Compute edge connectivity 𝜆(𝐺) of 𝐺 
           (and edge set 𝑋 of size 𝜆(𝐺) that divides 𝐺 into ≥ 2 parts)

• minimum set 𝑋 is a minimum 𝑠-𝑡 cut for some 𝑠, 𝑡 ∈ 𝑉
– Actually for all 𝑠, 𝑡 in different components of 𝐺! = (𝑉, 𝐸 ∖ 𝑋) 

• Fix 𝑠, find min 𝑠-𝑡 cut for all 𝑡 ≠ 𝑠 ⟹ running time 𝑂 𝑚𝑛(

𝑨 𝑩⋮

≥ 𝑘

Need to remove ≥ 𝑘 
edges to disconnect 𝐺

≔𝜆 𝐺

Edge Connectivity 𝝀 𝑮
max 𝑘 such that 𝐺 is
𝑘-edge connected. 
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Minimum 𝑠-𝑡 Vertex-Cut
Given: undirected graph 𝐺 = (𝑉, 𝐸), nodes 𝑠, 𝑡 ∈ 𝑉

𝒔-𝒕 vertex cut: Set 𝑋 ⊂ 𝑉 such that 𝑠, 𝑡 ∉ 𝑋 and 𝑠 and 𝑡 are in 
different components of the sub-graph 𝐺[𝑉 ∖ 𝑋] induced by 𝑉 ∖ 𝑋

Size of vertex cut: |𝑋|

Objective: find 𝑠-𝑡 vertex-cut of minimum size
• Replace undirected edges {𝑢, 𝑣} by (𝑢, 𝑣) and (𝑣, 𝑢)
• Compute max 𝑠-𝑡 flow for edge capacities ∞ and node capacities

𝑐! = 1	for	𝑣 ≠ 𝑠, 𝑡	

• Replace each node 𝑣 by 𝑣"# and 𝑣$%&
• Min edge cut corresponds to min vertex cut in 𝐺

𝑿 𝑡𝑠

∞∞
∞

∞
∞

1
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Vertex Connectivity
Definition: A graph 𝐺 = 𝑉, 𝐸  is 𝑘-vertex connected for an integer 
𝑘 ≥ 1 if the sub-graph 𝐺[𝑉 ∖ 𝑋] induced by 𝑉 ∖ 𝑋 is connected for 
every vertex set

𝑋 ⊆ 𝑉, 𝑋 ≤ 𝑘 − 1.	

Goal: Compute vertex connectivity 𝜅(𝐺) of 𝐺 
           (and node set 𝑋 of size 𝜅(𝐺) that divides 𝐺 into ≥ 2 parts)

• Compute minimum 𝑠-𝑡 vertex cut for all 𝑠 and all 𝑡 ≠ 𝑠 such that 𝑡 
is not a neighbor of 𝑠    ⟹  running time 𝑂 𝑚 ⋅ 𝑛*

𝑿

Need to remove ≥ 𝑘 
nodes to disconnect 𝐺

|𝑋| ≥ 𝑘 ≔𝜅 𝐺 Vertex Connectivity 𝜿 𝑮
max 𝑘 such that 𝐺 is
𝑘-vertex connected. 
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Edge-Disjoint Paths
Given: Graph 𝐺 = (𝑉, 𝐸) with nodes 𝑠, 𝑡 ∈ 𝑉

Goal: Find as many edge-disjoint 𝑠-𝑡 paths as possible

Solution: 
• Find max 𝑠-𝑡 flow in 𝐺 with edge capacities 𝑐+ = 1 for all 𝑒 ∈ 𝐸

Flow 𝑓 induces 𝑓  edge-disjoint paths:
• Integral capacities à can compute integral max flow 𝑓
• Get 𝑓  edge-disjoint paths by greedily picking them
• Correctness follows from flow conservation 𝑓"# 𝑣 = 𝑓$%&(𝑣)

𝑠 𝑡
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Vertex-Disjoint Paths
Given: Graph 𝐺 = (𝑉, 𝐸) with nodes 𝑠, 𝑡 ∈ 𝑉

Goal: Find as many internally vertex-disjoint 𝑠-𝑡 paths as possible

Solution: 
• Find max 𝑠-𝑡 flow in 𝐺 with node capacities 𝑐! = 1 for all 𝑣 ∈ 𝑉

Flow 𝑓 induces 𝑓  vertex-disjoint paths:
• Integral capacities à can compute integral max flow 𝑓
• Get 𝑓  vertex-disjoint paths by greedily picking them
• Correctness follows from flow conservation 𝑓"# 𝑣 = 𝑓$%&(𝑣)

𝑠 𝑡
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Menger’s Theorem
Theorem: (edge version)
For every graph 𝐺 = (𝑉, 𝐸) with nodes 𝑠, 𝑡 ∈ 𝑉, the size of the 
minimum 𝑠-𝑡 (edge) cut equals the maximum number of pairwise 
edge-disjoint paths from 𝑠 to 𝑡.

Theorem: (node version)
For every graph 𝐺 = (𝑉, 𝐸) with non-adjacent nodes 𝑠, 𝑡 ∈ 𝑉, the 
size of the minimum 𝑠-𝑡 vertex cut equals the maximum number of 
pairwise internally vertex-disjoint paths from 𝑠 to 𝑡.

• Both versions can be seen as a special case of the max flow min 
cut theorem
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Baseball Elimination

• Only wins/losses possible (no ties), winner: team with most wins
• Which teams can still win (as least as many wins as top team)?
• Boston is eliminated (cannot win):

– Boston  can get at most 78 wins, New York already has 81 wins

• If for some 𝑖, 𝑗: 𝑤, + 𝑟, < 𝑤- à team 𝑖 is eliminated
• Sufficient condition, but not a necessary one!

Team Wins Losses To Play Against = 𝒓𝒊𝒋
𝒊 𝒘𝒊 ℓ𝒊 𝒓𝒊 NY Balt. T. Bay Tor. Bost.

New York 81 69 12 - 2 5 2 3

Baltimore 79 77 6 2 - 2 1 1

Tampa Bay 79 74 9 5 2 - 1 1

Toronto 76 80 6 2 1 1 - 2

Boston 71 84 7 3 1 1 2 -
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Baseball Elimination

• Can Toronto still finish first?
• Toronto can get 82 > 81 wins, but:

NY and Tampa have to play 5 more times against each other
à if NY wins two, it gets 83 wins, otherwise, Tampa has 83 wins

• Hence: Toronto cannot finish first
• How about the others? How can we solve this in general?

Team Wins Losses To Play Against = 𝒓𝒊𝒋
𝒊 𝒘𝒊 ℓ𝒊 𝒓𝒊 NY Balt. T. Bay Tor. Bost.

New York 81 69 12 - 2 5 2 3

Baltimore 79 77 6 2 - 2 1 1

Tampa Bay 79 74 9 5 2 - 1 1

Toronto 76 80 6 2 1 1 - 2

Boston 71 84 7 3 1 1 2 -
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Max Flow Formulation
• Can team 3 finish with most wins?

• Team 3 can finish first iff all source-game edges are saturated

1-2

1-4

1-5

2-4

2-5

4-5
game
nodes

𝒔

1

2

4

5

𝒕

𝒓𝟒,𝟓

𝒓 𝟏,𝟐
∞

∞ team
nodes

𝒘𝟑 + 𝒓𝟑 −𝒘𝟏

𝒘𝟑+
𝒓𝟑−

𝒘𝟓

Remaining number
of games between

the 2 teams

Number of wins team 𝒊 can
have to not beat team 𝟑
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Reason for Elimination

• Detroit could finish with 49 + 27 = 76 wins

• Consider 𝑅 = {NY, Bal, Bos, Tor}
– Have together already won 𝑤 𝑅 = 278 games
– Must together win at least 𝑟 𝑅 = 27 more games

• On average, teams in 𝑅 win (89:(8
;

= 76.25 games

Team Wins Losses To Play Against = 𝒓𝒊𝒋
𝒊 𝒘𝒊 ℓ𝒊 𝒓𝒊 NY Balt. Bost. Tor. Detr.

New York 75 59 28 - 3 8 7 3

Baltimore 71 63 28 3 - 2 7 4

Boston 69 66 27 8 2 - 0 0

Toronto 63 72 27 7 7 0 - 0

Detroit 49 86 27 3 4 0 0 -

AL East: Aug 30, 1996
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Reason for Elimination
Team 3 eliminated ⟺ min cut 𝑨, 𝑽 ∖ 𝑨  of cap. < “all blue edges”

1-2

1-4

1-5

2-4

2-5

4-5
game
nodes

𝒔

1

2

4

5

𝒕

𝒓𝟒,𝟓

𝒓 𝟏,𝟐
∞

∞ team
nodes

𝒘𝟑 + 𝒓𝟑 −𝒘𝟏

𝒘𝟑+
𝒓𝟑−

𝒘𝟓

Remaining number
of games between

the 2 teams

Number of wins team 𝒊 can
have to not beat team 𝟑

𝑨
1

2

4

1-2

1-4

2-4

𝐴 contains team nodes 𝑅
with 𝑅 ≠ ∅

𝐴 contains all game nodes
for teams in 𝑅
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Reason for Elimination
Team 3 eliminated ⟺ min cut 𝑨, 𝑽 ∖ 𝑨  of cap. < “all blue edges”

1-2

1-4

1-5

2-4

2-5

4-5
game
nodes

𝒔

1

2

4

5

𝒕

𝒓𝟒,𝟓

𝒓 𝟏,𝟐
∞

∞ team
nodes

𝒘𝟑 + 𝒓𝟑 −𝒘𝟏

𝒘𝟑+
𝒓𝟑−

𝒘𝟓
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of games between

the 2 teams

Number of wins team 𝒊 can
have to not beat team 𝟑

𝑨
1

2

4

1-2

1-4

2-4

𝐴 contains team nodes 𝑅
with 𝑅 ≠ ∅

𝐴 contains all game nodes
for teams in 𝑅

%
!∈#

𝑤$ + 𝑟$ −𝑤! < %
!%&,!,&∈#

𝑟!,&

⇕
1
𝑅 ⋅ %

!∈#

𝑤! + %
!%&,!,&∈#

𝑟!,& > 𝑤$ + 𝑟$
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Reason for Elimination
Certificate of elimination:

𝑅 ⊆ 𝑋, 𝑤 𝑅 	≔t
,∈=

𝑤, , 𝑟 𝑅 ≔ t
,,-∈=

𝑟,,-

• Team 𝑥 ∈ 𝑋 is eliminated by 𝑅 ⊆ 𝑋 ∖ 𝑥  if

𝑤 𝑅 + 𝑟(𝑅)
|𝑅|

> 𝑤> + 𝑟>.

• If team 𝑥 ∈ 𝑋 is eliminated, there exists 𝑅 ⊆ 𝑋 ∖ 𝑥  such that
team 𝑥 is eliminated by 𝑅.
– 𝑅 can be constructed by looking at a minimum cut

!	 !	

#wins of 
nodes in 𝑅

#remaining games
among nodes in 𝑅
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Circulations with Demands
Given: Directed network with positive edge capacities

Sources & Sinks: Instead of one source and one destination, several 
sources that generate flow and several sinks that absorb flow.

Supply & Demand: sources have supply values, sinks demand values

Goal: Compute a flow such that source supplies and sink demands 
are exactly satisfied

• The circulation problem is a feasibility rather than a maximization 
problem
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Circulations with Demands: Formally
Given: Directed network 𝐺 = 𝑉, 𝐸  with
• Edge capacities 𝑐+ ≥ 0 for all 𝑒 ∈ 𝐸
• Node demands 𝑑! ∈ ℝ for all 𝑣 ∈ 𝑉

– 𝑑" > 0: node needs flow and therefore is a sink
– 𝑑" < 0: node has a supply of −𝑑" and is therefore a source
– 𝑑" = 0: node is neither a source nor a sink

Flow: Function 𝑓: 𝐸 → ℝ?@ satisfying
• Capacity Conditions: ∀𝑒 ∈ 𝐸: 	 0 ≤ 𝑓 𝑒 ≤ 𝑐+
• Demand Conditions: ∀𝑣 ∈ 𝑉:	 𝑓"# 𝑣 − 𝑓$%& 𝑣 = 𝑑!

Objective: Does a flow 𝑓 satisfying all conditions exist?
           If yes, find such a flow 𝑓.
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Example

-3 2

-3

4

3 3

2

2 2

1 2

22

2
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Condition on Demands
Claim: If there exists a feasible circulation with demands 𝑑! for 
𝑣 ∈ 𝑉, then

t
!∈A

𝑑! = 0.

Proof:

• ∑!𝑑! = ∑! 𝑓"# 𝑣 − 𝑓$%& 𝑣

• 𝑓(𝑒) of each edge 𝑒 appears twice in the above sum with 
different signs à overall sum is 0

Total supply = total demand:

De�ine	𝑫 ≔ t
𝒗:𝒅𝒗E𝟎

−𝒅𝒗= t
𝒗:𝒅𝒗G𝟎

𝒅𝒗
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Reduction to Maximum Flow
• Add “super-source” 𝑠∗ and “super-sink” 𝑡∗ to network

• valid circulations ⇔ valid 𝑠∗-𝑡∗ flow that saturates all red edges.

𝑺 𝑻
-3

-1

-6
3

2

1

4

0 0

0

0
0

0

𝒔∗ 𝒕∗
𝟑
𝟏

𝟔

𝟏
𝟒
𝟐
𝟑

𝑠∗ supplies
sources

with flow

𝑡∗ siphons
flow out
of sinks
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Example

-3 2

-3

4

3 3

2

2 2

1 2

22

2

𝒔∗

𝒕∗

3

3

2

4

3

3

2

4
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Formally…
Reduction: Get graph 𝐺I from graph as follows
• Node set of 𝐺I is 𝑉 ∪ 𝑠∗, 𝑡∗

• Edge set is 𝐸 and edges
– (𝑠∗, 𝑣) for all 𝑣 with 𝑑" < 0, capacity of edge is −𝑑"
– (𝑣, 𝑡∗) for all 𝑣 with 𝑑" > 0, capacity of edge is 𝑑"

Observations:
• Capacity of min 𝑠∗-𝑡∗ cut is at most 𝐷 (e.g., the cut 𝑠∗, 𝑉 ∪ {𝑡∗ )
• A feasible circulation on 𝐺 can be turned into a feasible flow of 

value 𝐷 of 𝐺′ by saturating all (𝑠∗, 𝑣) and (𝑣, 𝑡∗) edges.
• Any flow of 𝐺′ of value 𝐷 induces a feasible circulation on 𝐺

– 𝑠∗, 𝑣  and 𝑣, 𝑡∗  edges are saturated
– By removing these edges, we get exactly the demand constraints
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Circulation with Demands
Theorem: There is a feasible circulation with demands 𝑑!, 𝑣 ∈ 𝑉 
on graph 𝐺 if and only if there is a flow of value 𝐷 on 𝐺′.

• If all capacities and demands are integers, there is a valid 
integer circulation (if there is a valid circulation)

The max flow min cut theorem also implies the following:

Theorem: The graph 𝐺 has a feasible circulation with demands 
𝑑!, 𝑣 ∈ 𝑉 if and only if the sum of all demands is zero and for all 
cuts (𝐴, 𝐵),

t
!∈J

𝑑! ≤ 𝑐(𝐴, 𝐵) .
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Circulation: Demands and Lower Bounds
Given: Directed network 𝐺 = 𝑉, 𝐸  with
• Edge capacities 𝑐+ > 0 and lower bounds 𝟎 ≤ ℓ𝒆 ≤ 𝒄𝒆 for 𝒆 ∈ 𝑬
• Node demands 𝑑! ∈ ℝ for all 𝑣 ∈ 𝑉

– 𝑑" > 0: node needs flow and therefore is a sink
– 𝑑" < 0: node has a supply of −𝑑" and is therefore a source
– 𝑑" = 0: node is neither a source nor a sink

Flow: Function 𝑓: 𝐸 → ℝ?@ satisfying
• Capacity Conditions: ∀𝑒 ∈ 𝐸:	 ℓ𝒆 ≤ 𝒇 𝒆 ≤ 𝒄𝒆
• Demand Conditions: ∀𝑣 ∈ 𝑉:	 𝑓"# 𝑣 − 𝑓$%& 𝑣 = 𝑑!

Objective: Does a flow 𝑓 satisfying all conditions exist?
           If yes, find such a flow 𝑓.
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Solution Idea
• Define initial circulation 𝑓@ 𝑒 = ℓ+

Satisfies capacity constraints: ∀𝑒 ∈ 𝐸: ℓ+ ≤ 𝑓@ 𝑒 ≤ 𝑐+

• Define

𝐿! ≔ 𝑓@"# 𝑣 − 𝑓@$%& 𝑣 = t
+	"#&$	!

ℓ+ − t
+	$%&	$M	!

ℓ+

• If 𝐿! = 𝑑!, demand condition is satisfied at 𝑣 by 𝑓@, otherwise, 
we need to superimpose another circulation 𝑓N such that

𝑑!I ≔ 𝑓N"# 𝑣 − 𝑓N$%& 𝑣 = 𝑑! − 𝐿!

• Remaining capacity of edge 𝑒: 𝑐+I ≔ 𝑐+ − ℓ+

• We get a circulation problem with new demands 𝑑!I , new 
capacities 𝑐+I , and no lower bounds
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Eliminating a Lower Bound: Example

-3 2

-3

4

3 3

2

2 2

Lower bound of 2

-5 2

-1

4

1 3

2

2 2
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Reduce to Problem Without Lower Bounds
Graph 𝑮 = (𝑽, 𝑬):
• Capacity: For each edge 𝑒 ∈ 𝐸: ℓ+ ≤ 𝑓 𝑒 ≤ 𝑐+
• Demand: For each node 𝑣 ∈ 𝑉: 𝑓"# 𝑣 − 𝑓$%& 𝑣 = 𝑑!

Model lower bounds with supplies & demands:

Create Network 𝑮′ (without lower bounds):
• For each edge 𝑒 ∈ 𝐸: 𝑐+I = 𝑐+ − ℓ+
• For each node 𝑣 ∈ 𝑉: 𝑑!I = 𝑑! − 𝐿!

𝑢 𝑣
ℓ𝒆 ≤ 𝒄𝒆
Flow: ℓ𝒆
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Circulation: Demands and Lower Bounds
Theorem: There is a feasible circulation in 𝐺 (with lower bounds) if 
and only if there is feasible circulation in 𝐺′ (without lower bounds).

• Given circulation 𝑓′ in 𝐺′, 𝑓 𝑒 = 𝑓I 𝑒 + ℓ+ is circulation in 𝐺
– The capacity constraints are satisfied because 𝑓$ 𝑒 ≤ 𝑐% − ℓ%
– Demand conditions:

𝑓&' 𝑣 − 𝑓()* 𝑣 = E
%	&'*(	"

ℓ% + 𝑓$ 𝑒 − E
%	()*	(,	"

ℓ% + 𝑓$ 𝑒
	

	 = 𝐿" + 𝑑" − 𝐿" = 𝑑"
• Given circulation 𝑓 in 𝐺, 𝑓′(𝑒) = 𝑓 𝑒 − ℓ+ is circulation in 𝐺′

– The capacity constraints are satisfied because ℓ% ≤ 𝑓 𝑒 ≤ 𝑐%
– Demand conditions:

𝑓′&' 𝑣 − 𝑓$()* 𝑣 = E
%	&'*(	"

𝑓 𝑒 − ℓ% − E
%	()*	(,	"

𝑓 𝑒 − ℓ%
	

	 = 𝑑" − 𝐿"
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Integrality
Theorem: Consider a circulation problem with integral capacities, 
flow lower bounds, and node demands. If the problem is feasible, 
then it also has an integral solution.

Proof:
• Graph 𝐺′ has only integral capacities and demands
• Thus, the flow network used in the reduction to solve 

circulation with demands and no lower bounds has only 
integral capacities

• The theorem now follows because a max flow problem with 
integral capacities also has an optimal integral solution

• It also follows that with the max flow algorithms we studied, 
we get an integral feasible circulation solution.
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Matrix Rounding
• Given: 𝑝×𝑞 matrix 𝐷 = {𝑑,,-} of real numbers
• row 𝒊 sum: 𝑎, = ∑- 𝑑,,-,     column 𝒋 sum: 𝑏- = ∑, 𝑑,,-
• Goal: Round each 𝑑,,-, as well as 𝑎, and 𝑏- up or down to the 

next integer so that the sum of rounded elements in each row 
(column) equals the rounded row (column) sum

• Original application: publishing census data

Example:

3.14 6.80 7.30 17.24
9.60 2.40 0.70 12.70
3.60 1.20 6.50 11.30
16.34 10.40 14.50

3 7 7 17
10 2 1 13
3 1 7 11
16 10 15

original data possible rounding
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Matrix Rounding
Theorem: For any matrix, there exists a feasible rounding. 

Remark: Just rounding to the nearest integer doesn’t work

0.35 0.35 0.35 1.05
0.55 0.55 0.55 1.65
0.90 0.90 0.90

0 0 0 0
1 1 1 3
1 1 1

0 0 1 1
1 1 0 2
1 1 1

original data

feasible roundingrounding to nearest integer
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Reduction to Circulation

3.14 6.80 7.30 17.24
9.60 2.40 0.70 12.70
3.60 1.20 6.50 11.30
16.34 10.40 14.50

𝒓𝟏

𝒓𝟐

rows:

𝒓𝟑

𝒄𝟏

𝒄𝟐

𝒄𝟑

columns:
3,4
6,7

7,8

2,3𝑠 𝑡12,13

17,18

11,12

16,17

10,11

14,15

0,∞

Matrix elements and row/column sums
give a feasible circulation that satisfies
all lower bound, capacity, and demand
constraints

all demands 𝑑! = 0
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Matrix Rounding
Theorem: For any matrix, there exists a feasible rounding.

Proof:
• The matrix entries 𝑑,,- and the row and column sums 𝑎, and 𝑏- 

give a feasible circulation for the constructed network

• Every feasible circulation gives matrix entries with corresponding 
row and column sums (follows from demand constraints)

• Because all demands, capacities, and flow lower bounds are 
integral, there is an integral solution to the circulation problem

à gives a feasible rounding!
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Matching
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Gifts-Children Graph
• Which child likes which gift can be represented by a graph



Algorithm Theory Fabian Kuhn 38

Matching
Matching: Set of pairwise non-incident edges

Maximal Matching: A matching s.t. no more edges can be added

Maximum Matching: A matching of maximum possible size

Perfect Matching: Matching of size ⁄X ( (every node is matched)
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Bipartite Graph
Definition: A graph 𝐺 = 𝑉, 𝐸  is called bipartite iff its node set 
can be partitioned into two parts 𝑉 = 𝑉N ∪ 𝑉( such that for each 
edge u, v ∈ 𝐸,

𝑢, 𝑣 ∩ 𝑉N = 1.

• Thus, edges are only between the two parts

⋅

𝑉J 𝑉K
𝐸
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Santa’s Problem
Maximum Matching in Bipartite Graphs:

Every child can get a gift
iff there is a matching
of size #children

Clearly, every matching
is at most as big

If #children = #gifts,
there is a solution iff
there is a perfect matching
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Reducing to Maximum Flow
• Like edge-disjoint paths…

all capacities are 𝟏

𝒔 𝒕
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Reducing to Maximum Flow
Theorem: Every integer solution to the max flow problem on the 
constructed graph induces a maximum bipartite matching of 𝐺.

Proof:
1. An integer flow 𝑓 of value |𝑓| induces a matching of size |𝑓|

– Left nodes (gifts) have incoming capacity 1
– Right nodes (children) have outgoing capacity 1
– Left and right nodes are incident to ≤ 1 edge 𝑒 of 𝐺 with 𝑓 𝑒 = 1

2. A matching of size 𝑘 implies a flow 𝑓 of value 𝑓 = 𝑘
– For each edge {𝑢, 𝑣} of the matching:

𝑓 𝑠, 𝑢 = 𝑓 𝑢, 𝑣 = 𝑓 𝑣, 𝑡 = 1

– All other flow values are 0
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Running Time of Max. Bipartite Matching
Theorem: A maximum matching 𝑀∗ of a bipartite graph can be 
computed in time 𝑂 𝑚 ⋅ 𝑀∗ = 𝑂 𝑚 ⋅ 𝑛 .

• The problem can be reduced to a maximum flow problem on 
a flow network with 𝑂 𝑚  edges and all capacities = 1

• The Ford-Fulkerson algorithm solves the maximum flow 
problem in time 𝑂 𝑚 ⋅ 𝐶 , where 𝐶 is the value of the 
maximum flow (i.e., 𝐶 = 𝑀∗ ).

• A maximum matching 𝑀∗ has size 𝑀∗ ≤ ⁄X ( = 𝑂 𝑛 .
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Perfect Matching?
• There can only be a perfect matching if both sides of the 

partition have size ⁄X (.

• There is no perfect matching, iff there is an 𝑠-𝑡 cut of
size < ⁄X ( in the flow network.

§𝑛 2 §𝑛 2

𝑡𝑠
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𝑠-𝑡 Cuts

Partition (𝐴, 𝐵) of node set such that 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵

• If 𝑣, ∈ 𝐴: edge (𝑣,, 𝑡) is in cut (𝐴, 𝐵)

• If 𝑢, ∈ 𝐵: edge (𝑠, 𝑢,) is in cut (𝐴, 𝐵)

• Otherwise (if 𝑢, ∈ 𝐴, 𝑣, ∈ 𝐵), all edges from 𝑢, to some 𝑣- ∈
𝐵 are in cut (𝐴, 𝐵)

𝑢#

𝑢$

𝑢%

𝑢&

𝑢'

𝑢(

𝑣#

𝑣$

𝑣%

𝑣&

𝑣'

𝑣(
𝑈 𝑉

𝑡𝑠
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Hall’s Theorem
Theorem: A bipartite graph 𝐺 = (𝑈 ∪ 𝑉, 𝐸) for which 𝑈 = |𝑉| 
has a perfect matching if and only if

∀𝑼I ⊆ 𝑼: 𝑵 𝑼I ≥ 𝑼I ,
where 𝑁 𝑈I ⊆ 𝑉 is the set of neighbors of nodes in 𝑈′.

Proof:  No perfect matching ⟺ some 𝑠-𝑡 cut has capacity < ⁄𝑛 2
1. Assume there is 𝑈′ for which 𝑁 𝑈I < |𝑈I|:

𝑡𝑠

𝑼′ 𝑵(𝑼O)
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Hall’s Theorem
Theorem: A bipartite graph 𝐺 = (𝑈 ∪ 𝑉, 𝐸) for which 𝑈 = |𝑉| 
has a perfect matching if and only if

∀𝑼I ⊆ 𝑼: 𝑵 𝑼I ≥ 𝑼I ,
where 𝑁 𝑈I ⊆ 𝑉 is the set of neighbors of nodes in 𝑈′.

Proof:  No perfect matching ⟺ some 𝑠-𝑡 cut has capacity < ⁄𝑛 2
2. Assume that there is a cut (𝐴, 𝐵) of capacity < ⁄𝑛 2

𝑡𝑠

𝑼′

𝒙

𝒚𝒛

𝒙 + 𝒚 + 𝒛 <
𝒏
𝟐

|𝑵 𝑼O | ≤ 𝒚 + 𝒛

𝑼′ =
𝒏
𝟐
− 𝒙
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Hall’s Theorem
Theorem: A bipartite graph 𝐺 = (𝑈 ∪ 𝑉, 𝐸) for which 𝑈 = |𝑉| 
has a perfect matching if and only if

∀𝑼I ⊆ 𝑼: 𝑵 𝑼I ≥ 𝑼I ,
where 𝑁 𝑈I ⊆ 𝑉 is the set of neighbors of nodes in 𝑈′.

Proof:  No perfect matching ⟺ some 𝑠-𝑡 cut has capacity < 𝑛
2. Assume that there is a cut (𝐴, 𝐵) of capacity < 𝑛

𝒙 + 𝒚 + 𝒛 <
𝒏
𝟐

|𝑵 𝑼O | ≤ 𝒚 + 𝒛

𝑼′ =
𝒏
𝟐
− 𝒙

𝒚 + 𝒛 <
𝒏
𝟐
− 𝒙

𝒚 + 𝒛 < 𝑼O

𝑵 𝑼′ < 𝑼O


