

Algorithm Theory

Chapter 6 Graph Algorithms

Maximum Flow Applications

Maximum Flow Applications

- Maximum flow has many applications
- Reducing a problem to a max flow problem can even be seen as an important algorithmic technique

• Examples:

- related network flow problems
- computation of small cuts
- computation of matchings
- computing disjoint paths
- scheduling problems
- assignment problems with some side constraints

— ...

Undirected Edges and Vertex Capacities

Undirected Edges:

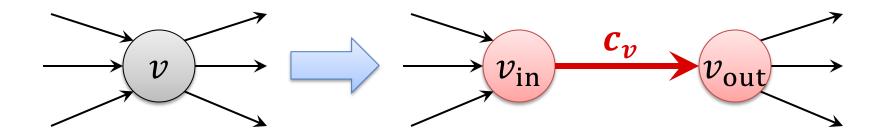
• Undirected edge {*u*, *v*}: add edges (*u*, *v*) and (*v*, *u*) to network

Vertex Capacities:

- Not only edges, but also (or only) nodes have capacities
- Capacity c_v of node $v \notin \{s, t\}$:

$$f^{\rm in}(v) = f^{\rm out}(v) \le c_v$$

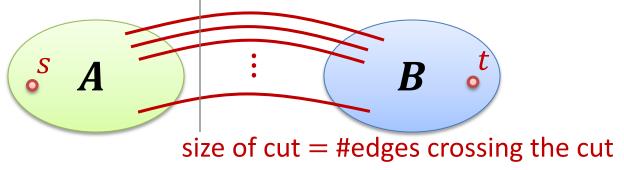
• Replace node v by edge $e_v = \{v_{in}, v_{out}\}$:



Minimum *s*-*t* Cut

- **Given:** undirected graph G = (V, E), nodes $s, t \in V$
- *s*-*t* cut: Partition (A, B) of V such that $s \in A, t \in B$

Size of cut (A, B): number of edges crossing the cut



Objective: find *s*-*t* cut of minimum size

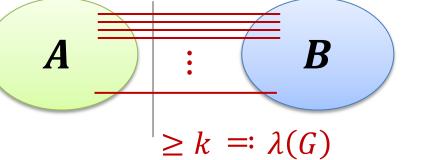
- Create flow network:
 - make edges directed:
 edge capacities = 1
- Size of cut in G = capacity of cut in flow network

Edge Connectivity

FREBURG

Definition: A graph G = (V, E) is k-edge connected for an integer $k \ge 1$ if the graph $G_X = (V, E \setminus X)$ is connected for every edge set

 $X \subseteq E, |X| \le k - 1.$ Need to remove $\ge k$ edges to disconnect *G*



Edge Connectivity $\lambda(G)$

max k such that G is k-edge connected.

Goal: Compute *edge connectivity* $\lambda(G)$ of *G* (and edge set *X* of size $\lambda(G)$ that divides *G* into ≥ 2 parts)

- minimum set X is a minimum s-t cut for some $s, t \in V$
 - Actually for all s, t in different components of $G_X = (V, E \setminus X)$
- Fix s, find min s-t cut for all $t \neq s \Rightarrow$ running time $O(mn^2)$

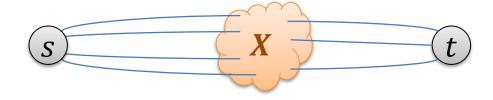
Algorithm Theory

Minimum *s*-*t* Vertex-Cut

Given: undirected graph G = (V, E), nodes $s, t \in V$

s-*t* vertex cut: Set $X \subset V$ such that $s, t \notin X$ and s and t are in different components of the sub-graph $G[V \setminus X]$ induced by $V \setminus X$

Size of vertex cut: |X|



Objective: find *s*-*t* vertex-cut of minimum size

- Replace undirected edges {*u*, *v*} by (*u*, *v*) and (*v*, *u*)
- Compute max *s*-*t* flow for edge capacities ∞ and node capacities

$$c_v = 1$$
 for $v \neq s, t$

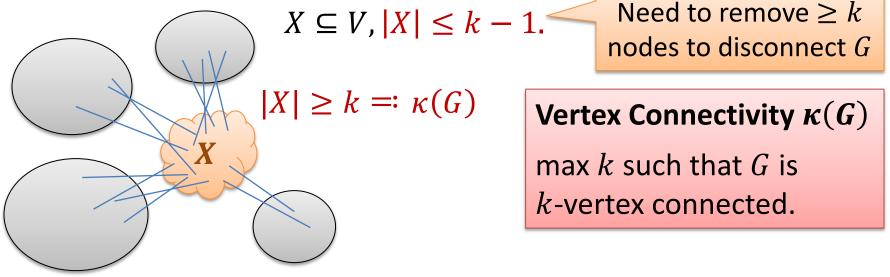
- Replace each node v by v_{in} and v_{out}
- Min edge cut corresponds to min vertex cut in G

Algorithm Theory

Vertex Connectivity

FREIBURG

Definition: A graph G = (V, E) is k-vertex connected for an integer $k \ge 1$ if the sub-graph $G[V \setminus X]$ induced by $V \setminus X$ is connected for every vertex set



Goal: Compute vertex connectivity $\kappa(G)$ of G(and node set X of size $\kappa(G)$ that divides G into ≥ 2 parts)

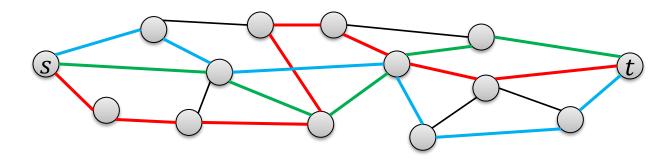
• Compute minimum s-t vertex cut for all s and all $t \neq s$ such that t is not a neighbor of $s \implies$ running time $O(m \cdot n^3)$

Algorithm Theory

Edge-Disjoint Paths

Given: Graph G = (V, E) with nodes $s, t \in V$

Goal: Find as many edge-disjoint *s*-*t* paths as possible



Solution:

• Find max *s*-*t* flow in *G* with edge capacities $c_e = 1$ for all $e \in E$

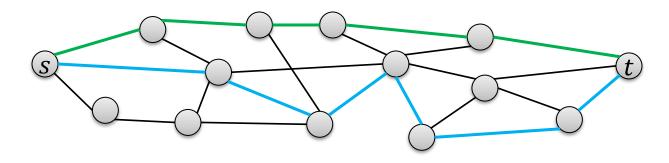
Flow f induces |f| edge-disjoint paths:

- Integral capacities \rightarrow can compute integral max flow f
- Get |f| edge-disjoint paths by greedily picking them
- Correctness follows from flow conservation $f^{in}(v) = f^{out}(v)$

Vertex-Disjoint Paths

Given: Graph G = (V, E) with nodes $s, t \in V$

Goal: Find as many internally vertex-disjoint *s*-*t* paths as possible



Solution:

• Find max s-t flow in G with node capacities $c_v = 1$ for all $v \in V$

Flow f induces |f| vertex-disjoint paths:

- Integral capacities \rightarrow can compute integral max flow f
- Get |f| vertex-disjoint paths by greedily picking them
- Correctness follows from flow conservation $f^{in}(v) = f^{out}(v)$

Theorem: (edge version)

For every graph G = (V, E) with nodes $s, t \in V$, the size of the minimum s-t (edge) cut equals the maximum number of pairwise edge-disjoint paths from s to t.

Theorem: (node version)

For every graph G = (V, E) with non-adjacent nodes $s, t \in V$, the size of the minimum s-t vertex cut equals the maximum number of pairwise internally vertex-disjoint paths from s to t.

 Both versions can be seen as a special case of the max flow min cut theorem

Baseball Elimination

Team	Wins	Losses	To Play	Against = r_{ij}				
i	w _i	ℓ_i	r _i	NY	Balt.	Т. Вау	Tor.	Bost.
New York	81	69	12	-	2	5	2	3
Baltimore	79	77	6	2	-	2	1	1
Tampa Bay	79	74	9	5	2	-	1	1
Toronto	76	80	6	2	1	1	-	2
Boston	71	84	7	3	1	1	2	-

- Only wins/losses possible (no ties), winner: team with most wins
- Which teams can still win (as least as many wins as top team)?
- Boston is eliminated (cannot win):
 - Boston can get at most 78 wins, New York already has 81 wins
- If for some $i, j: w_i + r_i < w_j \rightarrow$ team i is eliminated
- Sufficient condition, but not a necessary one!

Algorithm Theory

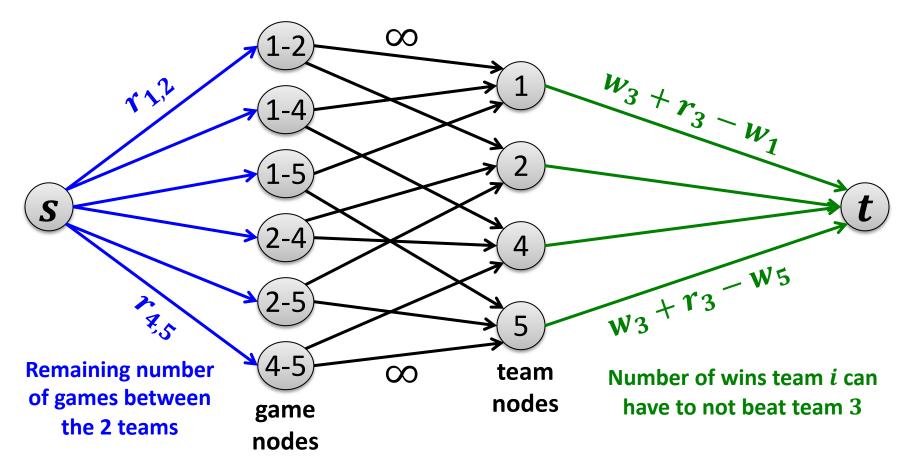
Baseball Elimination

Team	Wins	Losses	To Play	Against = r_{ij}				
i	W _i	ℓ_i	r _i	NY	Balt.	Т. Вау	Tor.	Bost.
New York	81	69	12	-	2	5	2	3
Baltimore	79	77	6	2	-	2	1	1
Tampa Bay	79	74	9	5	2	-	1	1
Toronto	76	80	6	2	1	1	-	2
Boston	71	84	7	3	1	1	2	-

- Can Toronto still finish first?
- Toronto can get 82 > 81 wins, but: NY and Tampa have to play 5 more times against each other
 → if NY wins two, it gets 83 wins, otherwise, Tampa has 83 wins
- Hence: Toronto cannot finish first
- How about the others? How can we solve this in general?

Max Flow Formulation

• Can team 3 finish with most wins?



• Team 3 can finish first iff all source-game edges are saturated

Algorithm Theory

Reason for Elimination

AL East: Aug 30, 1996

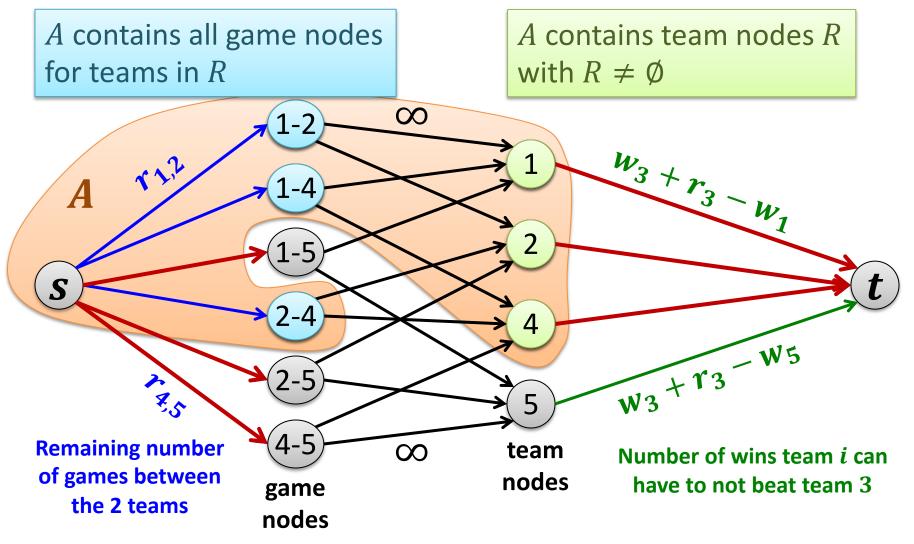
Team	Wins	Losses	To Play	Against = r_{ij}				
i	w _i	ℓ_i	r _i	NY	Balt.	Bost.	Tor.	Detr.
New York	75	59	28	-	3	8	7	3
Baltimore	71	63	28	3	-	2	7	4
Boston	69	66	27	8	2	-	0	0
Toronto	63	72	27	7	7	0	-	0
Detroit	49	86	27	3	4	0	0	-

- Detroit could finish with 49 + 27 = 76 wins
- Consider $R = \{NY, Bal, Bos, Tor\}$
 - Have together already won w(R) = 278 games
 - Must together win at least r(R) = 27 more games
- On average, teams in R win $\frac{278+27}{4} = 76.25$ games

Algorithm Theory

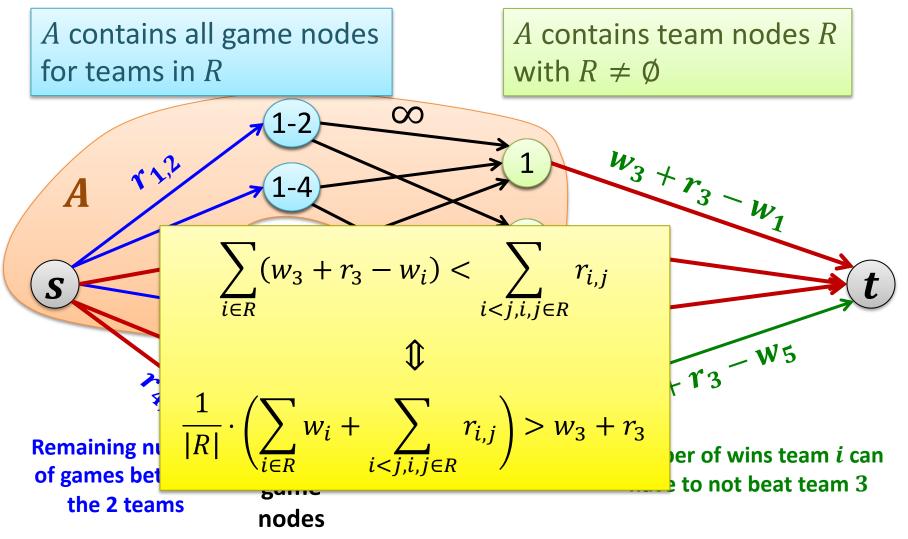
Reason for Elimination

Team 3 eliminated \Leftrightarrow min cut $(A, V \setminus A)$ of cap. < "all blue edges"

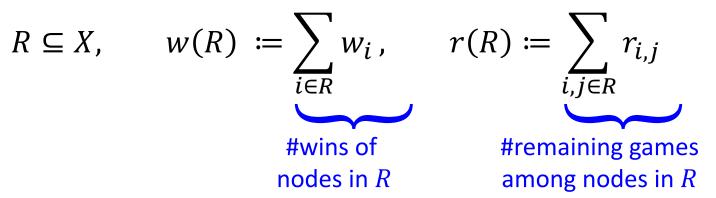


Reason for Elimination

Team 3 eliminated \Leftrightarrow min cut $(A, V \setminus A)$ of cap. < "all blue edges"



Certificate of elimination:



• Team $x \in X$ is eliminated by $R \subseteq X \setminus \{x\}$ if

$$\frac{w(R) + r(R)}{|R|} > w_x + r_x.$$

- If team $x \in X$ is eliminated, there exists $R \subseteq X \setminus \{x\}$ such that team x is eliminated by R.
 - R can be constructed by looking at a minimum cut

Given: Directed network with positive edge capacities

Sources & Sinks: Instead of one source and one destination, several sources that generate flow and several sinks that absorb flow.

Supply & Demand: sources have supply values, sinks demand values

Goal: Compute a flow such that source supplies and sink demands are exactly satisfied

• The circulation problem is a feasibility rather than a maximization problem

Circulations with Demands: Formally

Given: Directed network G = (V, E) with

- Edge capacities $c_e \ge 0$ for all $e \in E$
- Node demands $d_v \in \mathbb{R}$ for all $v \in V$
 - $d_{v} > 0$: node needs flow and therefore is a sink
 - $-d_{v} < 0$: node has a supply of $-d_{v}$ and is therefore a source
 - $d_{v} = 0$: node is neither a source nor a sink

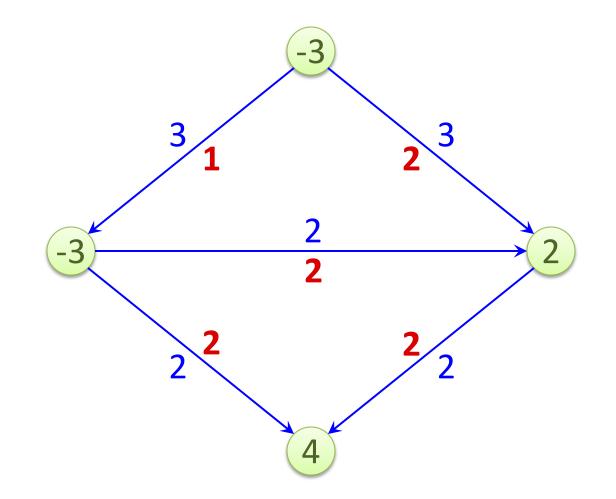
Flow: Function $f: E \to \mathbb{R}_{\geq 0}$ satisfying

- Capacity Conditions: $\forall e \in E: 0 \leq f(e) \leq c_e$
- Demand Conditions: $\forall v \in V$: $f^{in}(v) f^{out}(v) = d_v$

Objective: Does a flow f satisfying all conditions exist? If yes, find such a flow f.

Algorithm Theory

Example



Condition on Demands

FREBURG

Claim: If there exists a feasible circulation with demands d_v for $v \in V$, then

 $\sum_{\nu\in V}d_{\nu}=0.$

Proof:

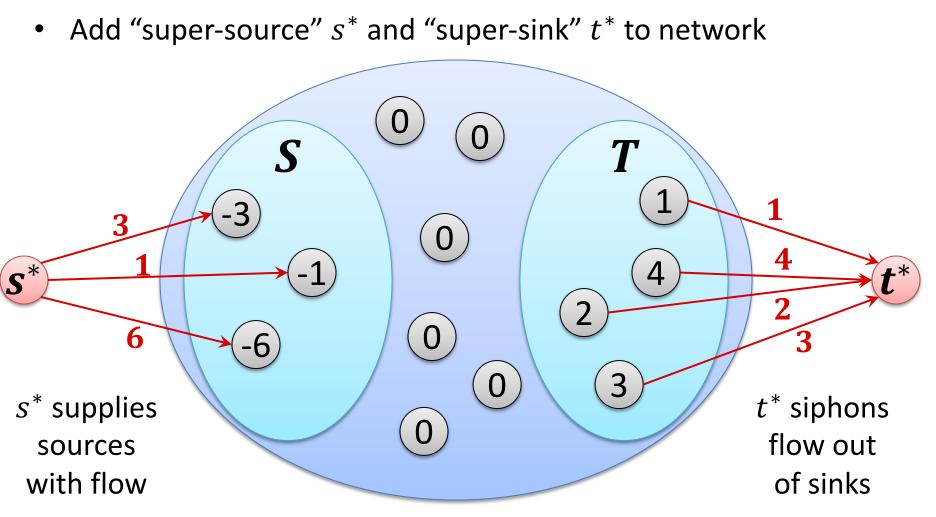
•
$$\sum_{v} d_{v} = \sum_{v} \left(f^{\text{in}}(v) - f^{\text{out}}(v) \right)$$

f(e) of each edge e appears twice in the above sum with different signs → overall sum is 0

Total supply = total demand:

Define
$$D \coloneqq \sum_{v:d_v < 0} -d_v = \sum_{v:d_v > 0} d_v$$

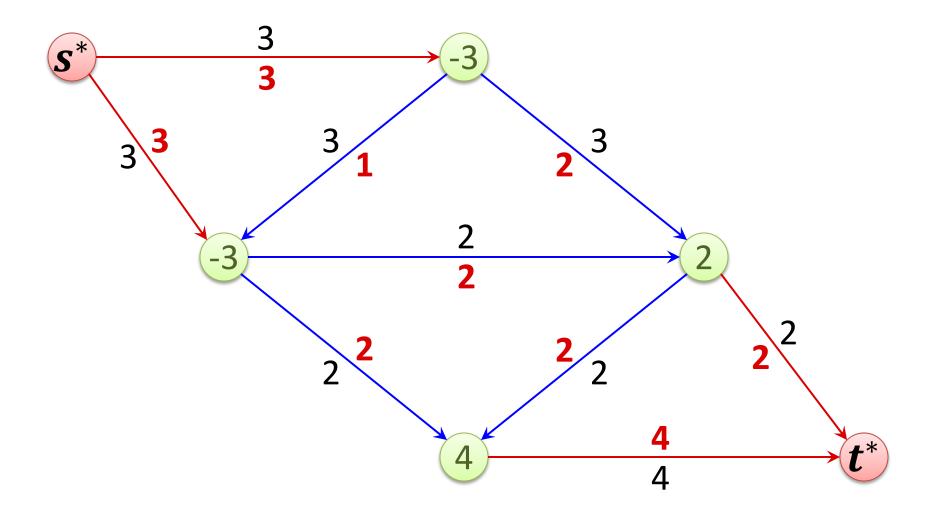
Reduction to Maximum Flow



• valid circulations \Leftrightarrow valid s^* - t^* flow that saturates all red edges.

Algorithm Theory

Example



Formally...

Reduction: Get graph G' from graph as follows

- Node set of G' is $V \cup \{s^*, t^*\}$
- Edge set is *E* and edges
 - $-(s^*, v)$ for all v with $d_v < 0$, capacity of edge is $-d_v$
 - (v, t^*) for all v with $d_v > 0$, capacity of edge is d_v

Observations:

- Capacity of min s^*-t^* cut is at most D (e.g., the cut $(s^*, V \cup \{t^*\})$
- A feasible circulation on G can be turned into a feasible flow of value D of G' by saturating all (s*, v) and (v, t*) edges.
- Any flow of G' of value D induces a feasible circulation on G
 - (s^*, v) and (v, t^*) edges are saturated
 - By removing these edges, we get exactly the demand constraints

Circulation with Demands

Theorem: There is a feasible circulation with demands $d_v, v \in V$ on graph G if and only if there is a flow of value D on G'.

• If all capacities and demands are integers, there is a valid integer circulation (if there is a valid circulation)

The max flow min cut theorem also implies the following:

Theorem: The graph G has a feasible circulation with demands $d_v, v \in V$ if and only if the sum of all demands is zero and for all cuts (A, B),

$$\sum_{\nu\in B}d_{\nu}\leq c(A,B).$$

Circulation: Demands and Lower Bounds

Given: Directed network G = (V, E) with

- Edge capacities $c_e > 0$ and lower bounds $0 \le \ell_e \le c_e$ for $e \in E$
- Node demands $d_v \in \mathbb{R}$ for all $v \in V$
 - $d_{v} > 0$: node needs flow and therefore is a sink
 - $-d_{v} < 0$: node has a supply of $-d_{v}$ and is therefore a source
 - $d_{v} = 0$: node is neither a source nor a sink

Flow: Function $f: E \to \mathbb{R}_{\geq 0}$ satisfying

- Capacity Conditions: $\forall e \in E$: $\ell_e \leq f(e) \leq c_e$
- Demand Conditions: $\forall v \in V$: $f^{in}(v) f^{out}(v) = d_v$

Objective: Does a flow f satisfying all conditions exist? If yes, find such a flow f.

Algorithm Theory

Solution Idea

- Define initial circulation $f_0(e) = \ell_e$ Satisfies capacity constraints: $\forall e \in E : \ell_e \leq f_0(e) \leq c_e$
- Define

$$L_{v} \coloneqq f_{0}^{\mathrm{in}}(v) - f_{0}^{\mathrm{out}}(v) = \sum_{e \mathrm{into} v} \ell_{e} - \sum_{e \mathrm{out} \mathrm{of} v} \ell_{e}$$

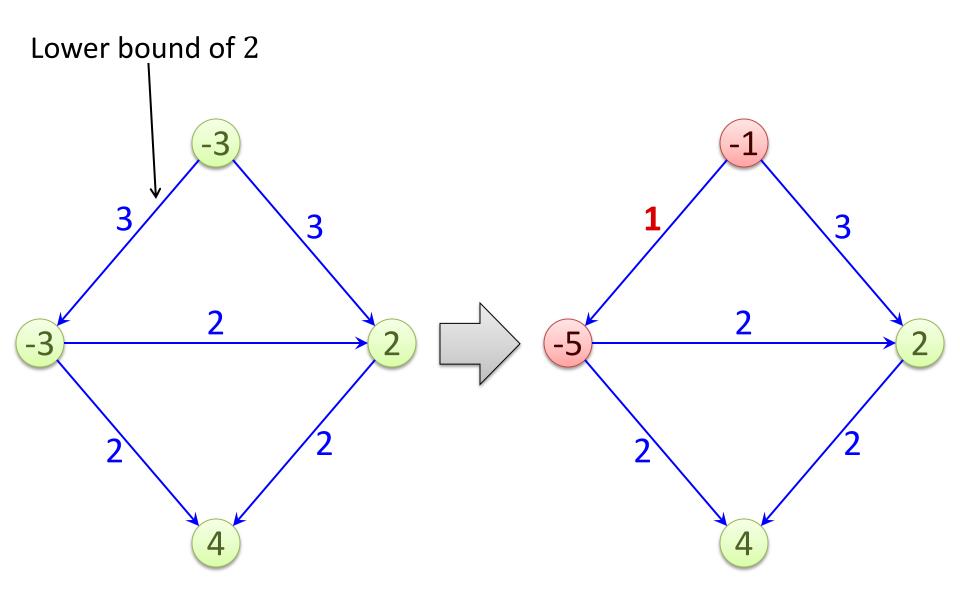
• If $L_v = d_v$, demand condition is satisfied at v by f_0 , otherwise, we need to superimpose another circulation f_1 such that

$$d'_{\nu} \coloneqq f_1^{\text{in}}(\nu) - f_1^{\text{out}}(\nu) = d_{\nu} - L_{\nu}$$

- Remaining capacity of edge $e: c'_e \coloneqq c_e \ell_e$
- We get a circulation problem with new demands d'_{v} , new capacities c'_{e} , and no lower bounds

Algorithm Theory

Eliminating a Lower Bound: Example



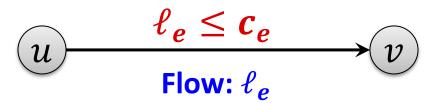
UNI FREIBURG

Reduce to Problem Without Lower Bounds

Graph G = (V, E):

- Capacity: For each edge $e \in E$: $\ell_e \leq f(e) \leq c_e$
- Demand: For each node $v \in V$: $f^{in}(v) f^{out}(v) = d_v$

Model lower bounds with supplies & demands:



Create Network G' (without lower bounds):

- For each edge $e \in E: c'_e = c_e \ell_e$
- For each node $v \in V: d'_v = d_v L_v$

Circulation: Demands and Lower Bounds

Theorem: There is a feasible circulation in G (with lower bounds) if and only if there is feasible circulation in G' (without lower bounds).

- Given circulation f' in G', $f(e) = f'(e) + \ell_e$ is circulation in G
 - The capacity constraints are satisfied because $f'(e) \leq c_e \ell_e$
 - Demand conditions:

$$f^{\text{in}}(v) - f^{\text{out}}(v) = \sum_{e \text{ into } v} \left(\ell_e + f'(e)\right) - \sum_{e \text{ out of } v} \left(\ell_e + f'(e)\right)$$
$$= L_v + \left(d_v - L_v\right) = d_v$$

- Given circulation f in G, $f'(e) = f(e) \ell_e$ is circulation in G'
 - The capacity constraints are satisfied because $\ell_e \leq f(e) \leq c_e$
 - Demand conditions:

$$f^{\prime \text{in}}(v) - f^{\prime \text{out}}(v) = \sum_{e \text{ into } v} (f(e) - \ell_e) - \sum_{e \text{ out of } v} (f(e) - \ell_e)$$
$$= d_v - L_v$$

Algorithm Theory

Integrality

Theorem: Consider a circulation problem with integral capacities, flow lower bounds, and node demands. If the problem is feasible, then it also has an integral solution.

Proof:

- Graph G' has only integral capacities and demands
- Thus, the flow network used in the reduction to solve circulation with demands and no lower bounds has only integral capacities
- The theorem now follows because a max flow problem with integral capacities also has an optimal integral solution
- It also follows that with the max flow algorithms we studied, we get an integral feasible circulation solution.

Algorithm Theory

Matrix Rounding

- **Given:** $p \times q$ matrix $D = \{d_{i,j}\}$ of real numbers
- row *i* sum: $a_i = \sum_j d_{i,j}$, column *j* sum: $b_j = \sum_i d_{i,j}$
- Goal: Round each d_{i,j}, as well as a_i and b_j up or down to the next integer so that the sum of rounded elements in each row (column) equals the rounded row (column) sum
- Original application: publishing census data

Example:

3.14	6.80	7.30	17.24
9.60	2.40	0.70	12.70
3.60	1.20	6.50	11.30
16.34	10.40	14.50	

3	7	7	17
10	2	1	13
3	1	7	11
16	10	15	

possible rounding

Algorithm Theory

Theorem: For any matrix, there exists a feasible rounding.

Remark: Just rounding to the nearest integer doesn't work

0.35	0.35	0.35	1.05
0.55	0.55	0.55	1.65
0.90	0.90	0.90	

original data

0	0	0	0
1	1	1	3
1	1	1	

rounding to nearest integer

0	0	1	1
1	1	0	2
1	1	1	

feasible rounding

Algorithm Theory

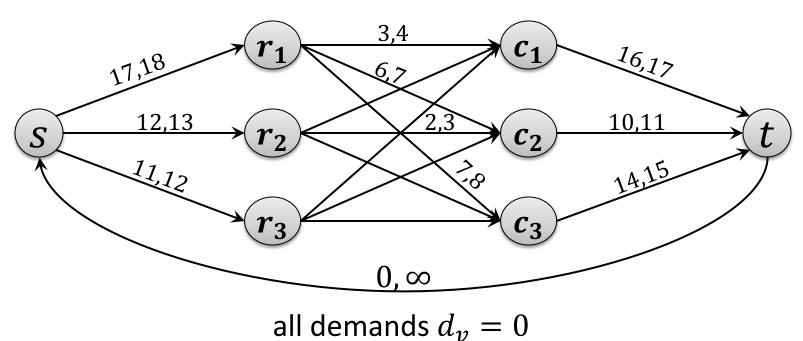
Reduction to Circulation

3.14	6.80	7.30	17.24
9.60	2.40	0.70	12.70
3.60	1.20	6.50	11.30
16.34	10.40	14.50	

Matrix elements and row/column sums give a feasible circulation that satisfies all lower bound, capacity, and demand constraints

columns:

rows:

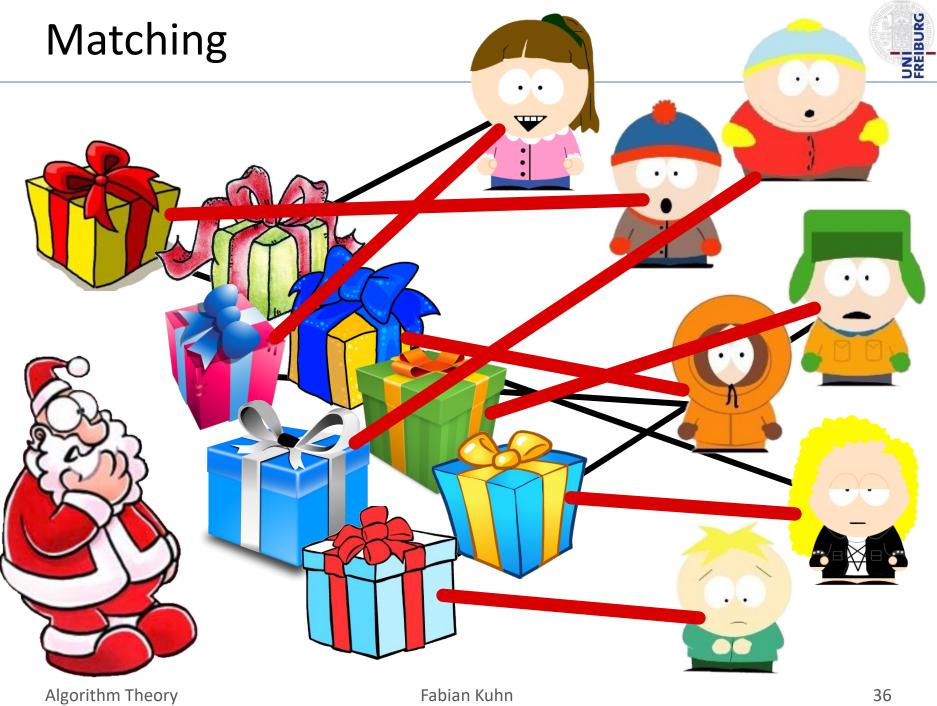


Theorem: For any matrix, there exists a feasible rounding.

Proof:

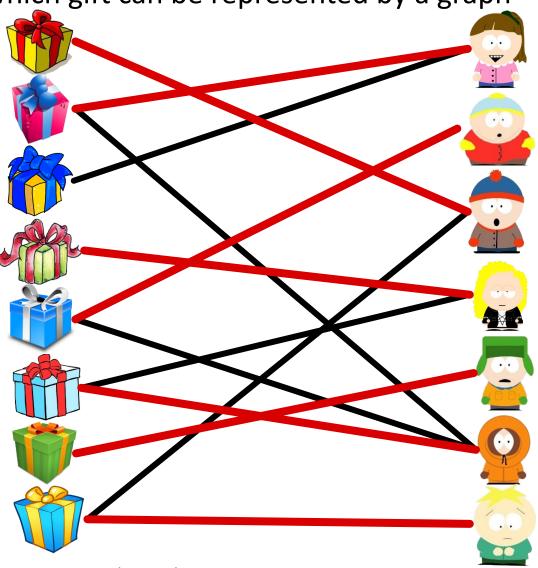
- The matrix entries $d_{i,j}$ and the row and column sums a_i and b_j give a feasible circulation for the constructed network
- Every feasible circulation gives matrix entries with corresponding row and column sums (follows from demand constraints)
- Because all demands, capacities, and flow lower bounds are integral, there is an integral solution to the circulation problem

→ gives a feasible rounding!



Gifts-Children Graph

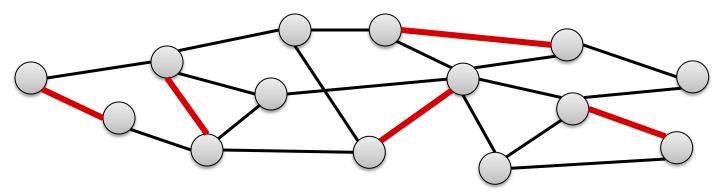
• Which child likes which gift can be represented by a graph



BURG

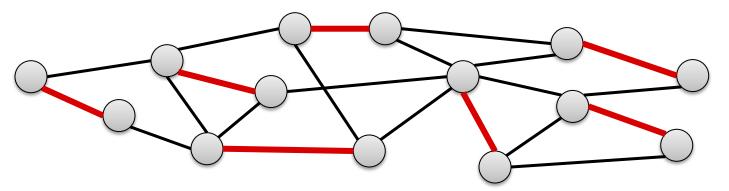
Matching

Matching: Set of pairwise non-incident edges



Maximal Matching: A matching s.t. no more edges can be added

Maximum Matching: A matching of maximum possible size



Perfect Matching: Matching of size n/2 (every node is matched)

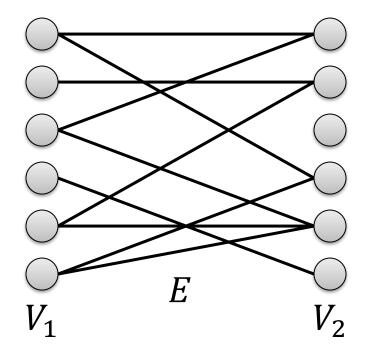
Algorithm Theory

Bipartite Graph

Definition: A graph G = (V, E) is called bipartite iff its node set can be partitioned into two parts $V = V_1 \cup V_2$ such that for each edge $\{u, v\} \in E$,

 $|\{u, v\} \cap V_1| = 1.$

• Thus, edges are only between the two parts



Algorithm Theory

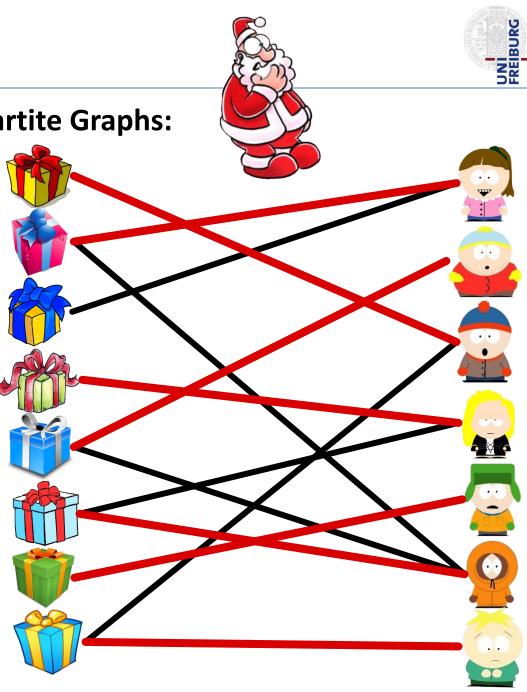
Santa's Problem

Maximum Matching in Bipartite Graphs:

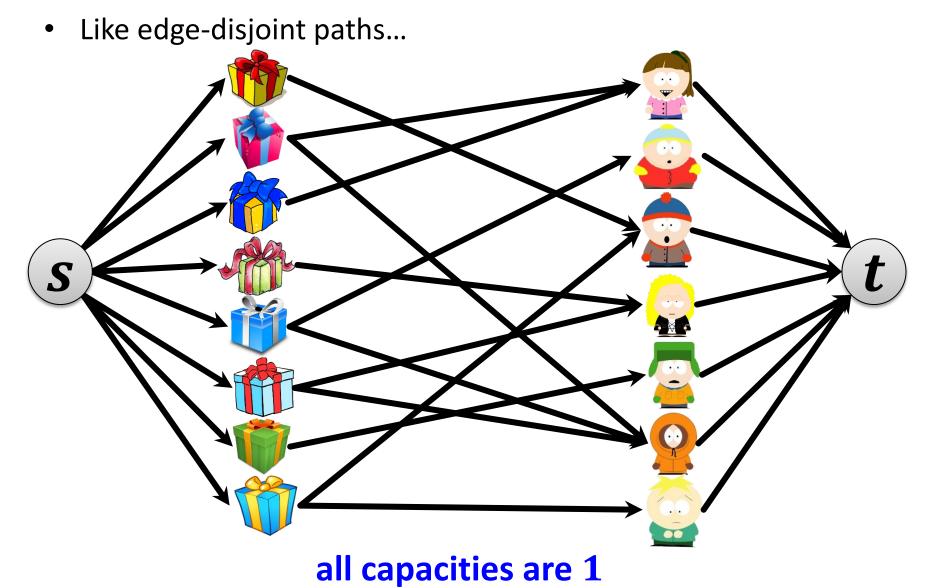
Every child can get a gift iff there is a matching of size #children

Clearly, every matching is at most as big

If #children = #gifts, there is a solution iff there is a perfect matching



Reducing to Maximum Flow



Algorithm Theory

Reducing to Maximum Flow

Theorem: Every integer solution to the max flow problem on the constructed graph induces a maximum bipartite matching of *G*.

Proof:

- 1. An integer flow f of value |f| induces a matching of size |f|
 - Left nodes (gifts) have incoming capacity 1
 - Right nodes (children) have outgoing capacity 1
 - Left and right nodes are incident to ≤ 1 edge e of G with f(e) = 1
- 2. A matching of size k implies a flow f of value |f| = k
 - For each edge $\{u, v\}$ of the matching:

$$f((s,u)) = f((u,v)) = f((v,t)) = 1$$

All other flow values are 0

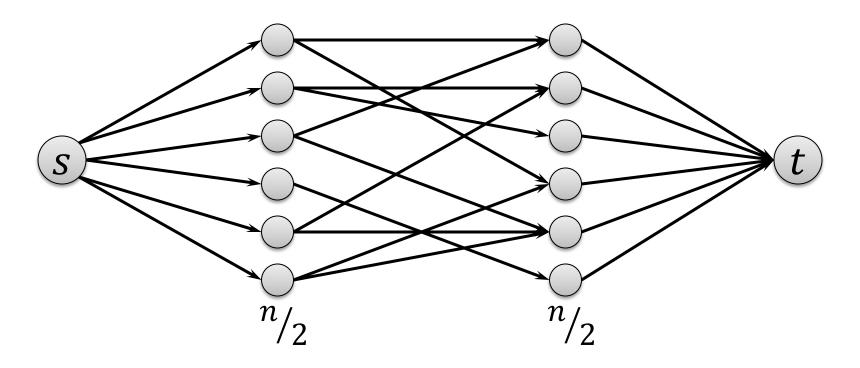
Running Time of Max. Bipartite Matching

Theorem: A maximum matching M^* of a bipartite graph can be computed in time $O(m \cdot |M^*|) = O(m \cdot n)$.

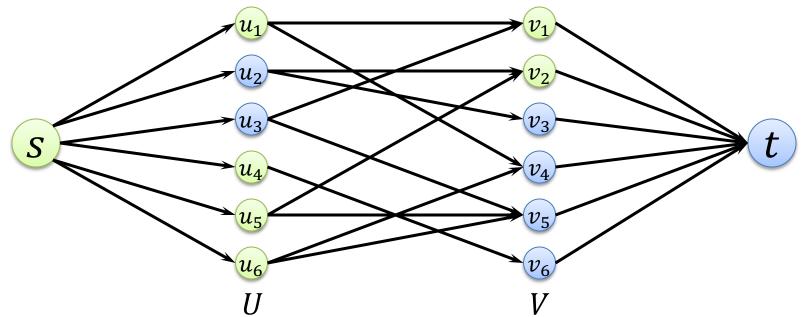
- The problem can be reduced to a maximum flow problem on a flow network with O(m) edges and all capacities = 1
- The Ford-Fulkerson algorithm solves the maximum flow problem in time $O(m \cdot C)$, where C is the value of the maximum flow (i.e., $C = |M^*|$).
- A maximum matching M^* has size $|M^*| \le n/2 = O(n)$.

Perfect Matching?

- There can only be a perfect matching if both sides of the partition have size n/2.
- There is no perfect matching, iff there is an *s*-*t* cut of size < ⁿ/₂ in the flow network.



s-t Cuts



Partition (A, B) of node set such that $s \in A$ and $t \in B$

- If $v_i \in A$: edge (v_i, t) is in cut (A, B)
- If $u_i \in B$: edge (s, u_i) is in cut (A, B)
- Otherwise (if u_i ∈ A, v_i ∈ B), all edges from u_i to some v_j ∈ B are in cut (A, B)

Algorithm Theory

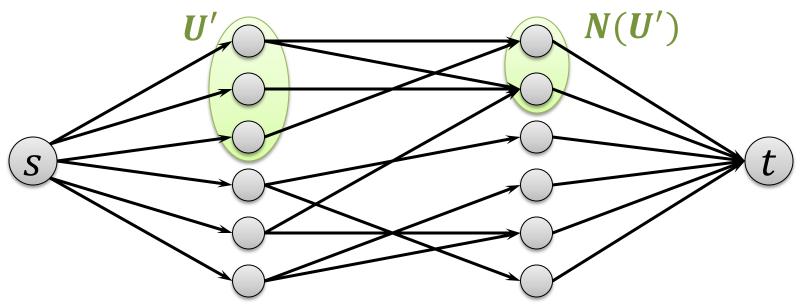
Hall's Theorem

Theorem: A bipartite graph $G = (U \cup V, E)$ for which |U| = |V| has a perfect matching if and only if $\forall U' \subseteq U : |N(U')| \ge |U'|$,

where $N(U') \subseteq V$ is the set of neighbors of nodes in U'.

Proof: No perfect matching \Leftrightarrow some *s*-*t* cut has capacity < n/2

1. Assume there is U' for which |N(U')| < |U'|:



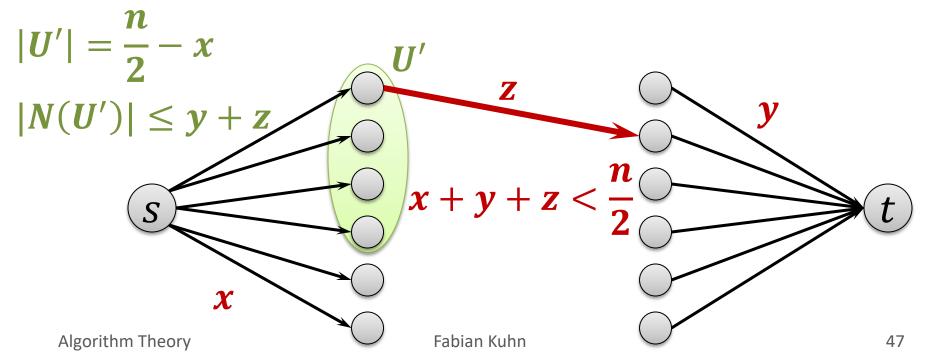
Hall's Theorem

Theorem: A bipartite graph $G = (U \cup V, E)$ for which |U| = |V|has a perfect matching if and only if $\forall U' \subseteq U: |N(U')| \ge |U'|,$

where $N(U') \subseteq V$ is the set of neighbors of nodes in U'.

Proof: No perfect matching \Leftrightarrow some *s*-*t* cut has capacity < n/2

2. Assume that there is a cut (A, B) of capacity < n/2



Hall's Theorem

Theorem: A bipartite graph $G = (U \cup V, E)$ for which |U| = |V| has a perfect matching if and only if $\forall U' \subseteq U : |N(U')| \ge |U'|$,

where $N(U') \subseteq V$ is the set of neighbors of nodes in U'.

Proof: No perfect matching \Leftrightarrow some *s*-*t* cut has capacity < n

2. Assume that there is a cut (A, B) of capacity < n

 $x + y + z < \frac{n}{2} \qquad \implies y + z < \frac{n}{2} - x$ $|U'| = \frac{n}{2} - x \qquad \implies y + z < |U'|$ $|N(U')| \le y + z \qquad \implies |N(U')| < |U'|$