

Algorithm Theory

Chapter 6 Graph Algorithms

Maximum Matching

Matching

Matching: Set of pairwise non-incident edges

Maximal Matching: A matching s.t. no more edges can be added

Maximum Matching: A matching of maximum possible size

Perfect Matching: Matching of size n/2 (every node is matched)

Algorithm Theory

Bipartite Graph

Definition: A graph G = (V, E) is called bipartite iff its node set can be partitioned into two parts $V = V_1 \cup V_2$ such that for each edge $\{u, v\} \in E$,

 $|\{u, v\} \cap V_1| = 1.$

• Thus, edges are only between the two parts

Algorithm Theory

Reducing to Maximum Flow

• Like edge-disjoint paths...

Running Time of Max. Bipartite Matching

Theorem: A maximum matching M^* of a bipartite graph can be computed in time $O(m \cdot |M^*|) = O(m \cdot n)$.

- The problem can be reduced to a maximum flow problem on a flow network with O(m) edges and all capacities = 1
- The Ford-Fulkerson algorithm solves the maximum flow problem in time $O(m \cdot C)$, where C is the value of the maximum flow (i.e., $C = |M^*|$).
- A maximum matching M^* has size $|M^*| \le n/2 = O(n)$.

Perfect Matching?

- There can only be a perfect matching if both sides of the partition have size n/2.
- There is no perfect matching, iff there is an *s*-*t* cut of size < ⁿ/₂ in the flow network.

s-t Cuts

Partition (A, B) of node set such that $s \in A$ and $t \in B$

- If $v_i \in A$: edge (v_i, t) is in cut (A, B)
- If $u_i \in B$: edge (s, u_i) is in cut (A, B)
- Otherwise (if u_i ∈ A, v_i ∈ B), all edges from u_i to some v_j ∈ B are in cut (A, B)

Algorithm Theory

Hall's Theorem

Theorem: A bipartite graph $G = (U \cup V, E)$ for which |U| = |V|has a perfect matching if and only if $\forall U' \subseteq U: |N(U')| \ge |U'|,$

where $N(U') \subseteq V$ is the set of neighbors of nodes in U'.

Proof: No perfect matching \Leftrightarrow some *s*-*t* cut has capacity < n/2

1. Assume there is U' for which |N(U')| < |U'|:

Hall's Theorem

Theorem: A bipartite graph $G = (U \cup V, E)$ for which |U| = |V|has a perfect matching if and only if $\forall U' \subseteq U: |N(U')| \ge |U'|,$

where $N(U') \subseteq V$ is the set of neighbors of nodes in U'.

Proof: No perfect matching \Leftrightarrow some *s*-*t* cut has capacity < n/2

2. Assume that there is a cut (A, B) of capacity < n/2

Hall's Theorem

Theorem: A bipartite graph $G = (U \cup V, E)$ for which |U| = |V|has a perfect matching if and only if $\forall U' \subseteq U: |N(U')| \ge |U'|$,

where $N(U') \subseteq V$ is the set of neighbors of nodes in U'.

Proof: No perfect matching \Leftrightarrow some *s*-*t* cut has capacity < n

2. Assume that there is a cut (A, B) of capacity < n

 $x + y + z < \frac{n}{2} \qquad \implies y + z < \frac{n}{2} - x$ $|U'| = \frac{n}{2} - x \qquad \implies y + z < |U'|$ $|N(U')| \le y + z \qquad \implies |N(U')| < |U'|$

What About General Graphs

- Can we efficiently compute a maximum matching if G is not bipartite?
- How good is a maximal matching?
 - A matching that cannot be extended...
- Compare the size of a maximal and a maximum matching

 Each maximal matching edge is adjacent to ≤ 2 maximum matching edges

Algorithm Theory

Maximal vs. Maximum Matching

Theorem: For any maximal matching M and any maximum matching M^* , it holds that

$$|M| \ge \frac{|M^*|}{2}$$

л // * |

Proof:

• For each edge $e \in M$, let $\mu(e) \subseteq M^*$ be the adjacent edges in M^*

• Every edge in M^* is adjacent to some edge of M:

$$|M^*| = \left| \bigcup_{e \in M} \mu(e) \right| \le \sum_{e \in M} |\mu(e)| \le 2|M|.$$

Augmenting Paths

Consider a matching M of a graph G = (V, E):

• A node $v \in V$ is called **free** iff it is not matched

Augmenting Path: A (odd-length) path that starts and ends at a free node and visits edges in $E \setminus M$ and edges in M alternatingly.

augmenting path

• Matching *M* can be improved using an augmenting path by switching the role of each edge along the path

Algorithm Theory

Existence of Augmenting Paths

Theorem: A matching M of G = (V, E) is maximum if and only if there is no augmenting path.

Proof:

• Consider non-max. matching M and max. matching M^* and define

 $F \coloneqq M \setminus M^*$, $F^* \coloneqq M^* \setminus M$

- Note that $F \cap F^* = \emptyset$ and $|F| < |F^*|$
- Each node $v \in V$ is incident to at most one edge in both F and F^*
- *F* ∪ *F*^{*} induces even cycles and paths

Finding Augmenting Paths

Blossoms

Contracting Blossoms

Lemma: Graph G has an augmenting path w.r.t. matching M iff G' has an augmenting path w.r.t. matching M'.

Also: The matching M can be computed efficiently from M'.

Algorithm Theory

Contracting Blossoms

FREIBURG

Lemma: Graph G has an augmenting path w.r.t. matching M iff G' has an augmenting path w.r.t. matching M'.

• Obtain matchings M_1 / M_1' on G / G' by toggling matching on stem

$|M| = |M_1|$ and $|M'| = |M'_1|$:

- On *G*, there is an augm. path w.r.t. *M* iff there is an augm. path w.r.t. *M*₁
- On *G'*, there is an augm. path w.r.t. *M'* iff there is an augm. path w.r.t. *M*₁'
- We can w.l.o.g. assume that the root of the stem is a free node.

Contracting Blossoms

Lemma: Graph G has an augmenting path w.r.t. matching M iff G' has an augmenting path w.r.t. matching M'.

If the root of the blossom is free, any augmenting path w.r.t. M₁ that contains nodes of the blossom can be turned into an augmenting path that ends at the root of the blossom and consists of a part inside the blossom and a part outside it.

Algorithm Sketch:

- 1. Build a tree for each free node
- 2. Starting from an explored node u at even distance from a free node f in the tree of f, explore some unexplored edge $\{u, v\}$:
 - 1. If v is an unexplored node, v is matched to some neighbor w: add w to the tree (w is now explored)
 - If v is explored and in the same tree:
 at odd distance from root → ignore and move on
 at even distance from root → blossom found
 - If v is explored and in another tree
 at odd distance from root → ignore and move on
 at even distance from root → augmenting path found

Finding a Blossom: Restart search on smaller graph

Finding an Augmenting Path: Improve matching

Theorem: The algorithm can be implemented in time $O(mn^2)$.

- DFS to find augmenting path or blossom: O(m)
- Needs to be repeated each time, when a blossom is found
 - Contraction of blossom reduces number of nodes by at least 2
 - Number of repetitions is $\leq n/2$
- In time O(mn), we can find an augmenting path, if there is one and improve a given non-maximum matching
- Maximum matching has size $\leq n/2$

FREIBURG

We have seen:

- O(mn) time alg. to compute a max. matching in *bipartite graphs*
- $O(mn^2)$ time alg. to compute a max. matching in *general graphs*

Better algorithms:

• Best known running time (bipartite and general gr.): $O(m\sqrt{n})$

Weighted matching:

- Edges have weight, find a matching of **maximum total weight**
- The problem can also be solved optimally in polynomial time, both in bipartite graphs and in general graphs
 - Algorithms use maximum matching in unweighted graphs as subroutine

Vertex Cover vs Matching

FREIBURG

Consider a matching *M* and a vertex cover *S*

Claim: $|M| \leq |S|$

Proof:

- At least one node of every edge $\{u, v\} \in M$ is in S
- Needs to be a different node for different edges from *M*

Augmenting Paths

Consider a matching M of a graph G = (V, E):

• A node $v \in V$ is called **free** iff it is not matched

Augmenting Path: A (odd-length) path that starts and ends at a free node and visits edges in $E \setminus M$ and edges in M alternatingly.

alternating path

• Matching *M* can be improved using an augmenting path by switching the role of each edge along the path

Algorithm Theory

Maximum Weight Bipartite Matching

FREIBURG

• Let's again go back to bipartite graphs...

Given: Bipartite graph $G = (U \cup V, E)$ with edge weights $w_e \ge 0$

Goal: Find a matching *M* of maximum total weight

Minimum Weight Perfect Matching

Claim: Max weight bipartite matching is **equivalent** to finding a **minimum weight perfect matching** in a complete bipartite graph.

- 1. Turn into maximum weight perfect matching
 - add dummy nodes to get two equal-sized sides
 - add edges of weight 0 to make graph complete bipartite

2. Replace weights:
$$w'_e \coloneqq \max_f \{w_f\} - w_e$$

A Dual Problem

Dual problem of the min. weight perfect matching problem

- Assign a variable $a_u \ge 0$ to each node $u \in U$ and a variable $b_v \ge 0$ to each node $v \in V$
- Condition: for every edge $(u, v) \in U \times V$: $a_u + b_v \leq w_{uv}$

Claim: For every perfect matching $M \in U \times V$, it holds that

$$\sum_{(u,v)\in M} w_{uv} \ge \sum_{u\in U} a_u + \sum_{v\in V} b_v$$

Optimality Condition

Slack: For each edge (u, v) and dual values a_u, b_v , we define $s_{uv} \coloneqq w_{uv} - a_u - b_v \ge 0$

Claim: A perfect matching M is optimal if for all $(u, v) \in M$, $s_{uv} = 0$

- Goal: Find a dual solution a_u, b_v and a perfect matching such that the complementary slackness condition is satisfied!
 - i.e., for every matching edge (u, v), we want $s_{uv} = 0$
 - We then know that the matching is optimal!

Algorithm Theory

Algorithm Overview

- Start with any feasible dual solution a_u , b_v - i.e., solution satisfies that for all (u, v): $w_{uv} \ge a_u + b_v$
- Let E_0 be the edges for which $s_{uv} = 0$
 - Recall that $s_{uv} = w_{uv} a_u b_v$
- Compute maximum cardinality matching *M* of *E*₀

Observation: All edges (u, v) of the matching M satisfy $s_{uv} = 0$

- If *M* is a perfect matching, we are done
- If *M* is not a perfect matching, dual solution can be improved
 - We will look at this next...

Marked Nodes

Define set of marked nodes *L*:

• Set of nodes which can be reached on alternating paths on edges in E_0 starting from unmatched nodes in U

edges E_0 with $s_{uv} = 0$

optimal matching M

 L_0 : unmatched nodes in U

L: all nodes that can be reached on alternating paths starting from L₀

Marked Nodes

Define set of marked nodes *L*:

• Set of nodes which can be reached on alternating paths on edges in E_0 starting from unmatched nodes in U

edges E_0 with $s_{uv} = 0$

optimal matching M

L₀: unmatched nodes in U

L: all nodes that can be reached on alternating paths starting from L₀

Lemma:

- a) There are no E_0 -edges between $U \cap L$ and $V \setminus L$
- b) The set $(U \setminus L) \cup (V \cap L)$ is a vertex cover of size |M| of the graph induced by E_0

Improved Dual Solution

Recall: all edges (u, v) between $U \cap L$ and $V \setminus L$ have $s_{uv} > 0$

New dual solution:

$$\begin{split} \delta &\coloneqq \min_{u \in U \cap L, v \in V \setminus L} \{s_{uv}\} \\ a'_u &\coloneqq \begin{cases} a_u, & \text{if } u \in U \setminus L \\ a_u + \delta, & \text{if } u \in U \cap L \end{cases} \\ b'_v &\coloneqq \begin{cases} b_v, & \text{if } v \in V \setminus L \\ a_v - \delta, & \text{if } v \in V \cap L \end{cases} \end{split}$$

Claim: New dual solution is feasible (all s_{uv} remain ≥ 0)

Improved Dual Solution

Lemma: Obj. value of the dual solution grows by $\delta\left(\frac{n}{2} - |M|\right)$. **Proof:**

$$\delta \coloneqq \min_{u \in U \cap L, v \in V \setminus L} \{w_{uv}\}, \qquad a'_u \coloneqq \begin{cases} a_u, & \text{if } u \in U \setminus L \\ a_u + \delta, & \text{if } u \in U \cap L' \end{cases} \qquad b'_v \coloneqq \begin{cases} b_v, & \text{if } v \in V \setminus L \\ a_v - \delta, & \text{if } v \in V \cap L \end{cases}$$

Some terminology

- Old dual solution: a_u , b_v , $s_{uv} \coloneqq w_{uv} a_u b_v$
- New dual solution: a'_u , b'_v , $s'_{uv} \coloneqq w_{uv} a'_u b'_v$
- $E_0 \coloneqq \{(u, v) : s_{uv} = 0\}, \quad E'_0 \coloneqq \{(u, v) : s'_{uv} = 0\}$
- M, M': max. cardinality matchings of graphs ind. By E_0, E'_0

Claim: We can always guarantee that $M \subseteq M'$.

Termination

Lemma: The algorithm terminates in at most $O(n^2)$ iterations.

Proof:

• Each iteration: |M'| > |M| or M' = M and $|V \cap L'| > |V \cap L|$

Min. Weight Perfect Matching: Summary

Theorem: A minimum weight perfect matching can be computed in time $O(n^4)$.

- First dual solution: e.g., $a_u = 0$, $b_v = \min_{u \in U} w_{uv}$
- Compute set $E_0: O(n^2)$
- Compute max. cardinality matching of graph induced by E_0
 - First iteration: $O(n^2) \cdot O(n) = O(n^3)$
 - Other iterations: $O(n^2) \cdot O(1 + |M'| |M|)$

FREIBURG

We have seen:

- O(mn) time alg. to compute a max. matching in *bipartite graphs*
- $O(mn^2)$ time alg. to compute a max. matching in *general graphs*

Better algorithms:

• Best known running time (bipartite and general gr.): $O(m\sqrt{n})$

Weighted matching:

- Edges have weight, find a matching of **maximum total weight**
- *Bipartite graphs*: polynomial-time primal-dual algorithm
- General graphs: can also be solved in polynomial time (Edmond's algorithms is used as blackbox)