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Chapter 6
Graph Algorithms
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Matching
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Matching: Set of pairwise non-incident edges

Maximal Matching: A matching s.t. no more edges can be added

Maximum Matching: A matching of maximum possible size

Perfect Matching: Matching of size */, (every node is matched)
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Bipartite Graph

Definition: A graph G = (V, E) is called bipartite iff its node set
can be partitioned into two parts IV = V; UV, such that for each

edge {u,v} € E,
|{u, v} N V1| = 1.

* Thus, edges are only between the two parts

O

E
Vi V

Algorithm Theory Fabian Kuhn



Reducing to Maximum Flow

* Like edge-disjoint paths...

all capacities are 1
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Running Time of Max. Bipartite Matching .
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Theorem: A maximum matching M™ of a bipartite graph can be
computed in time O(m - |M*|) = O(m - n).

* The problem can be reduced to a maximum flow problem on

a flow network with O(m) edges and all capacities = 1

* The Ford-Fulkerson algorithm solves the maximum flow
problem in time O(m - C), where C is the value of the
maximum flow (i.e., C = |[M*|).

* A maximum matching M™* has size |M*| </, = 0(n).
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Perfect Matching?

UNI
FREIBURG

* There can only be a perfect matching if both sides of the
partition have size /,.

 There is no perfect matching, iff there is an s-t cut of
size < ™/, in the flow network.
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s-t Cuts
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Partition (4, B) of node setsuchthats € Aandt € B

 Ifv; € A:edge (v;,t)isincut (4,B)
* Ifu; € B:edge (s,u;)isincut (4, B)

* Otherwise (if u; € A, v; € B), all edges from u; to some v; €
B areincut (4,B)
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Hall’s Theorem
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Theorem: A bipartite graph G = (U UV, E) for which |U| = |V|
has a perfect matching if and only if

vU' C U:|N(U)| = U],
where N(U') € V is the set of neighbors of nodes in U'.

Proof: No perfect matching & some s-t cut has capacity < n/2
1. Assume there is U’ for which |[N(U")| < |U’|:

U’ N(U’)
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Hall’s Theorem
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Theorem: A bipartite graph G = (U UV, E) for which |U| = |V|
has a perfect matching if and only if

vU' C U:|N(U)| = U],
where N(U') € V is the set of neighbors of nodes in U'.

Proof: No perfect matching & some s-t cut has capacity < n/2
2. Assume that there is a cut (4, B) of capacity < n/2

Ull — E — X U/
, @ 4 O
NU)|<y+z ® O y
n
(5] Olx+y+z<=0" 0
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Hall’s Theorem
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Theorem: A bipartite graph G = (U UV, E) for which |U| = |V|
has a perfect matching if and only if

vU' C U:|N(U)| = U],
where N(U') € V is the set of neighbors of nodes in U'.

Proof: No perfect matching < some s-t cut has capacity < n
2. Assume that thereis a cut (4, B) of capacity < n

n n
x+y+z<§ — y+z<E—x
¢
n
|U’|=E—x == y+z<|U'|

U

INU)|sy+z = [NWU)|<|U
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What About General Graphs
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Can we efficiently compute a maximum matching if G is not
bipartite?

How good is a maximal matching?
— A matching that cannot be extended...

Compare the size of a maximal and a maximum matching

Each maximal matching edge is adjacent to
< 2 maximum matching edges
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Maximal vs. Maximum Matching
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Theorem: For any maximal matching M and any
maximum matching M~, it holds that

M*
IMIZ| l.
2

Proof:
 Foreachedgee € M, let u(e) € M* be the adjacent edges in M*

e
OO VeeM:lue)l <2
\ /

u(e)

* Every edge in M~ is adjacent to some edge of M:

| Ju@| < ) @1 <2m,

eeM eeM

|M*| =
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Augmenting Paths
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Consider a matching M of a graph ¢ = (V, E):
* Anodev €V iscalled free iff it is not matched

Augmenting Path: A (odd-length) path that starts and ends at a free
node and visits edges in E \ M and edges in M alternatingly.

free nodes

* Matching M can be improved using an augmenting path by
switching the role of each edge along the path
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Existence of Augmenting Paths
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Theorem: A matching M of G = (V, E) is maximum if and only if
there is no augmenting path.

Proof:
e Consider non-max. matching M and max. matching M™ and define
F:=M\M", F*=M"\M

* Notethat FNF* =@ and |F| < |F7|
 Each node v € V is incident to at most one edge in both F and F~*
« F UF™induces even cycles and paths

(HHHH)

O s e e ) AUEMeENtING path for M

O e e e D) | @UEMeNting path for M™*

(cannot exist)
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Finding Augmenting Paths
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Blossoms
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* If we find an odd cycle...

free node (J)) f
Graph G u,
@
Matching M 3
contract
blossom @\
.contracted blossom

Graph G’

Matching M’ = M \ {e, e’}
is a matching of G'.
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Contracting Blossoms
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Lemma: Graph G has an augmenting path w.r.t. matching M iff G' has
an augmenting path w.r.t. matching M'.

I ' I

Also: The matching M can be computed efficiently from M'.
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Contracting Blossoms

UNI
|

FREIBURG

Lemma: Graph G has an augmenting path w.r.t. matching M iff G' has
an augmenting path w.r.t. matching M'.

* Obtain matchings M, / M;' on G / G’ by toggling matching on stem
[ i

toggle matching toggle matching
on stem on stem

1%
M| = |My|and [M'| = |M]:
* On G, thereis an augm. path w.rt. M
X ~ ” - iff there is an augm. path w.r.t. M,

* OnG', there is an augm. path w.r.t. M’
iff there is an augm. path w.r.t. M;
 We can w.l.o.g. assume that the
root of the stem is a free node.
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Contracting Blossoms

Lemma: Graph G has an augmenting path w.r.t. matching M iff G' has
an augmenting path w.r.t. matching M'.

* If the root of the blossom is free, any augmenting path w.r.t. M;
that contains nodes of the blossom can be turned into an
augmenting path that ends at the root of the blossom and consists

of a part inside the blossom and a part outside it.

!
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Edmond’s Blossom Algorithm

UNI
|

FREIBURG

Algorithm Sketch:
1. Build a tree for each free node

2. Starting from an explored node u at even distance from a free
node f in the tree of f, explore some unexplored edge {u, v}:

1. Ifvisanunexplored node, v is matched to some neighbor w:
add w to the tree (w is now explored)

2. Ifvisexplored and in the same tree:
at odd distance from root - ignore and move on
at even distance from root = blossom found

3. Ifvisexplored andin another tree
at odd distance from root - ignore and move on
at even distance from root = augmenting path found
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Running Time

Finding a Blossom: Restart search on smaller graph
Finding an Augmenting Path: Improve matching

Theorem: The algorithm can be implemented in time O (mn?).
e DFS to find augmenting path or blossom: O(m)
* Needs to be repeated each time, when a blossom is found

— Contraction of blossom reduces number of nodes by at least 2
— Number of repetitions is < n/2

In time O(mn), we can find an augmenting path, if there is
one and improve a given non-maximum matching

* Maximum matching has size < n/2
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Matching Algorithms
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We have seen:
 O(mn) time alg. to compute a max. matching in bipartite graphs

. O(mnz) time alg. to compute a max. matching in general graphs

Better algorithms:

» Best known running time (bipartite and general gr.): 0(m+/n)

Weighted matching:
* Edges have weight, find a matching of maximum total weight

 The problem can also be solved optimally in polynomial time,
both in bipartite graphs and in general graphs

— Algorithms use maximum matching in unweighted graphs as subroutine
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Vertex Cover vs Matching

Consider a matching M and a vertex cover S

Claim: |[M| < |S]|

Proof:
* Atleast one node of every edge {u,v} € Misin S
* Needs to be a different node for different edges from M

Algorithm Theory Fabian Kuhn
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Augmenting Paths
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Consider a matching M of a graph ¢ = (V, E):
* Anodev €V iscalled free iff it is not matched

Augmenting Path: A (odd-length) path that starts and ends at a free
node and visits edges in E \ M and edges in M alternatingly.

free nodes

* Matching M can be improved using an augmenting path by
switching the role of each edge along the path
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Maximum Weight Bipartite Matching
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* Let’s again go back to bipartite graphs...

Given: Bipartite graph G = (U U V, E) with edge weights w, = 0
Goal: Find a matching M of maximum total weight

w, = 0
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Minimum Weight Perfect Matching
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Claim: Max weight bipartite matching is equivalent to finding a
minimum weight perfect matching in a complete bipartite graph.

1. Turninto maximum weight perfect matching
. add dummy nodes to get two equal-sized sides
. add edges of weight 0 to make graph complete bipartite

2. Replace weights: w, = m}gx{wf} — W,
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A Dual Problem

Dual problem of the min. weight perfect matching problem

* Assign avariable a, = 0toeachnodeu € U
and a variable b, = 0toeachnodev €V

* Condition: for every edge (u,v) e UXV: a, + b, <w,,

Claim: For every perfect matching M € UXV, it holds that

2 Wuvzzau+2bv

(uv)eM Uueuy VEV
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Optimality Condition
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Slack: For each edge (u, v) and dual values ay, b,,, we define
Syp = Wyp —ay — by, =0

Claim: A perfect matching M is optimal if for all (u,v) € M, s, = 0

* Goal: Find a dual solution a,, b,, and a perfect matching such that
the complementary slackness condition is satisfied!
— i.e., for every matching edge (u, v), we want s;,,, = 0
— We then know that the matching is optimal!

Algorithm Theory Fabian Kuhn 28



Algorithm Overview
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 Start with any feasible dual solution a,, b,
— i.e., solution satisfies that for all (u, v): wy, = a, + b,

* Let Ey be the edges for which s, = 0

— Recall that s, = wy, —a, — b,

* Compute maximum cardinality matching M of E

Observation: All edges (u, v) of the matching M satisfy s, =
 If M is a perfect matching, we are done

* If M is not a perfect matching, dual solution can be improved
— We will look at this next...
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Marked Nodes
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Define set of marked nodes L:

e Set of nodes which can be reached on alternating paths on
edges in Ej starting from unmatched nodes in U

O

edges Ey withs,,, = 0

optimal matching M

Ly: unmatched nodes in U

L: all nodes that can be reached
on alternating paths starting
from L,

O
O
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Marked Nodes
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Define set of marked nodes L:

e Set of nodes which can be reached on alternating paths on
edges in Ej starting from unmatched nodes in U

- edges E, with s, = 0

optimal matching M
‘ Ly: unmatched nodes in U

L: all nodes that can be reached
on alternating paths starting
from L,

O
O
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Marked Nodes — Vertex Cover
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Lemma:
a) There are no Ey-edges betweenUNLand V' \ L

b) Theset (U\L)U (V NL)isa vertex cover of size |M|
of the graph induced by Ej

Algorithm Theory Fabian Kuhn
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Improved Dual Solution

Recall: all edges (u, v) between U N LandV \ L have s, > 0

New dual solution:

0 = ueurrerl,IEEV\L{Suv}

. a,, ifu € U\L
a”'_{au+5, ifuelnl
, b, ifv e V\L
b”'_{av—& if vevNL

Claim: New dual solution is feasible (all s, remain = 0)

Algorithm Theory Fabian Kuhn
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Improved Dual Solution

s
Lemma: Obj. value of the dual solution grows by & (g — IMI).
Proof:
0= ueurrerl,iEEV\L{Wuv} ’ Q= {auai’ S, :ffl; EE ll]J\r[\‘ L’ by = {avbzl S, ?;Eel;\a L
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Termination
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Some terminology

* Old dualsolution: ay, b, Syy = wy, —a,— b,

* New dual solution: a;,, b, S, =wy, —a, — b,

* Ep={(wv):sy,, =0}, Eyj={wv): s, =0}

« M, M': max. cardinality matchings of graphs ind. By E, E|

Claim: We can always guarantee that M € M'.
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Termination
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Lemma: The algorithm terminates in at most O(n?) iterations.

Proof:
* Eachiteration: |[M'| > |M| or M'=Mand|VNnL|>|VNL]|
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Min. Weight Perfect Matching: Summary .
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Theorem: A minimum weight perfect matching can be computed
in time 0(n%).

* First dual solution:e.g., a, =0, b, = milr]l Wy
ue

e Compute set Ey: 0(n?)

* Compute max. cardinality matching of graph induced by E|
— First iteration: 0(n?) - 0(n) = 0(n3)
— Other iterations: 0(n?) - 0(1 + |M'| — |M))
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Matching Algorithms
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We have seen:

 O(mn) time alg. to compute a max. matching in bipartite graphs

. O(mnz) time alg. to compute a max. matching in general graphs

Better algorithms:

» Best known running time (bipartite and general gr.): 0(m+/n)

Weighted matching:
* Edges have weight, find a matching of maximum total weight
* Bipartite graphs: polynomial-time primal-dual algorithm

* General graphs: can also be solved in polynomial time
(Edmond’s algorithms is used as blackbox)
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