
Algorithm Theory

Chapter 6
Graph Algorithms

Maximum Matching

Fabian Kuhn

Algorithm Theory Fabian Kuhn 2

Matching
Matching: Set of pairwise non-incident edges

Maximal Matching: A matching s.t. no more edges can be added

Maximum Matching: A matching of maximum possible size

Perfect Matching: Matching of size ⁄! " (every node is matched)

Algorithm Theory Fabian Kuhn 3

Bipartite Graph
Definition: A graph 𝐺 = 𝑉, 𝐸 is called bipartite iff its node set
can be partitioned into two parts 𝑉 = 𝑉# ∪ 𝑉" such that for each
edge u, v ∈ 𝐸,

𝑢, 𝑣 ∩ 𝑉# = 1.

• Thus, edges are only between the two parts

⋅

𝑉! 𝑉"
𝐸

Algorithm Theory Fabian Kuhn 4

Reducing to Maximum Flow
• Like edge-disjoint paths…

all capacities are 𝟏

𝒔 𝒕

Algorithm Theory Fabian Kuhn 5

Running Time of Max. Bipartite Matching
Theorem: A maximum matching 𝑀∗ of a bipartite graph can be
computed in time 𝑂 𝑚 ⋅ 𝑀∗ = 𝑂 𝑚 ⋅ 𝑛 .

• The problem can be reduced to a maximum flow problem on
a flow network with 𝑂 𝑚 edges and all capacities = 1

• The Ford-Fulkerson algorithm solves the maximum flow
problem in time 𝑂 𝑚 ⋅ 𝐶 , where 𝐶 is the value of the
maximum flow (i.e., 𝐶 = 𝑀∗).

• A maximum matching 𝑀∗ has size 𝑀∗ ≤ ⁄! " = 𝑂 𝑛 .

Algorithm Theory Fabian Kuhn 6

Perfect Matching?
• There can only be a perfect matching if both sides of the

partition have size ⁄! ".

• There is no perfect matching, iff there is an 𝑠-𝑡 cut of
size < ⁄! " in the flow network.

:𝑛 2 :𝑛 2

𝑡𝑠

Algorithm Theory Fabian Kuhn 7

𝑠-𝑡 Cuts

Partition (𝐴, 𝐵) of node set such that 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵

• If 𝑣% ∈ 𝐴: edge (𝑣%, 𝑡) is in cut (𝐴, 𝐵)

• If 𝑢% ∈ 𝐵: edge (𝑠, 𝑢%) is in cut (𝐴, 𝐵)

• Otherwise (if 𝑢% ∈ 𝐴, 𝑣% ∈ 𝐵), all edges from 𝑢% to some 𝑣& ∈
𝐵 are in cut (𝐴, 𝐵)

𝑢!

𝑢"

𝑢#

𝑢$

𝑢%

𝑢&

𝑣!

𝑣"

𝑣#

𝑣$

𝑣%

𝑣&
𝑈 𝑉

𝑡𝑠

Algorithm Theory Fabian Kuhn 8

Hall’s Theorem
Theorem: A bipartite graph 𝐺 = (𝑈 ∪ 𝑉, 𝐸) for which 𝑈 = |𝑉|
has a perfect matching if and only if

∀𝑼) ⊆ 𝑼: 𝑵 𝑼) ≥ 𝑼) ,
where 𝑁 𝑈) ⊆ 𝑉 is the set of neighbors of nodes in 𝑈′.

Proof: No perfect matching ⟺ some 𝑠-𝑡 cut has capacity < ⁄𝑛 2
1. Assume there is 𝑈′ for which 𝑁 𝑈) < |𝑈)|:

𝑡𝑠

𝑼′ 𝑵(𝑼#)

Algorithm Theory Fabian Kuhn 9

Hall’s Theorem
Theorem: A bipartite graph 𝐺 = (𝑈 ∪ 𝑉, 𝐸) for which 𝑈 = |𝑉|
has a perfect matching if and only if

∀𝑼) ⊆ 𝑼: 𝑵 𝑼) ≥ 𝑼) ,
where 𝑁 𝑈) ⊆ 𝑉 is the set of neighbors of nodes in 𝑈′.

Proof: No perfect matching ⟺ some 𝑠-𝑡 cut has capacity < ⁄𝑛 2
2. Assume that there is a cut (𝐴, 𝐵) of capacity < ⁄𝑛 2

𝑡𝑠

𝑼′

𝒙

𝒚𝒛

𝒙 + 𝒚 + 𝒛 <
𝒏
𝟐

|𝑵 𝑼# | ≤ 𝒚 + 𝒛

𝑼′ =
𝒏
𝟐
− 𝒙

Algorithm Theory Fabian Kuhn 10

Hall’s Theorem
Theorem: A bipartite graph 𝐺 = (𝑈 ∪ 𝑉, 𝐸) for which 𝑈 = |𝑉|
has a perfect matching if and only if

∀𝑼) ⊆ 𝑼: 𝑵 𝑼) ≥ 𝑼) ,
where 𝑁 𝑈) ⊆ 𝑉 is the set of neighbors of nodes in 𝑈′.

Proof: No perfect matching ⟺ some 𝑠-𝑡 cut has capacity < 𝑛
2. Assume that there is a cut (𝐴, 𝐵) of capacity < 𝑛

𝒙 + 𝒚 + 𝒛 <
𝒏
𝟐

|𝑵 𝑼# | ≤ 𝒚 + 𝒛

𝑼′ =
𝒏
𝟐
− 𝒙

𝒚 + 𝒛 <
𝒏
𝟐
− 𝒙

𝒚 + 𝒛 < 𝑼#

𝑵 𝑼′ < 𝑼#

Algorithm Theory Fabian Kuhn 11

What About General Graphs
• Can we efficiently compute a maximum matching if 𝐺 is not

bipartite?

• How good is a maximal matching?
– A matching that cannot be extended…

• Compare the size of a maximal and a maximum matching

• Each maximal matching edge is adjacent to
≤ 2 maximum matching edges

Algorithm Theory Fabian Kuhn 12

Maximal vs. Maximum Matching
Theorem: For any maximal matching 𝑀 and any
maximum matching 𝑀∗, it holds that

𝑀 ≥
𝑀∗

2
.

Proof:
• For each edge 𝑒 ∈ 𝑀, let 𝜇 𝑒 ⊆ 𝑀∗ be the adjacent edges in 𝑀∗

• Every edge in 𝑀∗ is adjacent to some edge of 𝑀:

𝑀∗ = M
*∈,

𝜇 𝑒 ≤ N
*∈,

𝜇 𝑒 ≤ 2 𝑀 .

𝒆

𝝁(𝒆)
∀𝑒 ∈ 𝑀 ∶ 𝜇 𝑒 ≤ 2

Algorithm Theory Fabian Kuhn 13

Augmenting Paths
Consider a matching 𝑀 of a graph 𝐺 = (𝑉, 𝐸):
• A node 𝑣 ∈ 𝑉 is called free iff it is not matched

Augmenting Path: A (odd-length) path that starts and ends at a free
node and visits edges in 𝐸 ∖ 𝑀 and edges in 𝑀 alternatingly.

• Matching 𝑀 can be improved using an augmenting path by
switching the role of each edge along the path

free nodes

augmenting path

Algorithm Theory Fabian Kuhn 14

Existence of Augmenting Paths
Theorem: A matching 𝑀 of 𝐺 = (𝑉, 𝐸) is maximum if and only if
there is no augmenting path.
Proof:
• Consider non-max. matching 𝑀 and max. matching 𝑀∗ and define

𝐹 ≔ 𝑀 ∖𝑀∗, 𝐹∗ ≔ 𝑀∗ ∖ 𝑀

• Note that 𝐹 ∩ 𝐹∗ = ∅ and 𝐹 < |𝐹∗|
• Each node 𝑣 ∈ 𝑉 is incident to at most one edge in both 𝐹 and 𝐹∗

• 𝐹 ∪ 𝐹∗ induces even cycles and paths

augmenting path for 𝑀

augmenting path for 𝑀∗

(cannot exist)

Algorithm Theory Fabian Kuhn 15

Finding Augmenting Paths

free nodes

augmenting path

odd cycle

Algorithm Theory Fabian Kuhn 16

Blossoms
• If we find an odd cycle…

free node 𝑓

𝑢

𝑣

𝑤

𝑥

𝑦

𝑧

blossom

𝑏

𝑐

𝑑

𝑎

𝑒
stem

𝑓

𝑢

𝑣′𝑏

𝑐
𝑑

𝑎

𝑒

contracted blossom

contract
blossom

Graph 𝑮

Graph 𝑮′

root

Matching 𝑴

𝒆 𝒆′

Matching 𝑴! = 𝑴 ∖ 𝒆, 𝒆!
is a matching of 𝑮!.

Algorithm Theory Fabian Kuhn 17

Lemma: Graph 𝐺 has an augmenting path w.r.t. matching 𝑀 iff 𝐺′ has
an augmenting path w.r.t. matching 𝑀′.

Also: The matching 𝑀 can be computed efficiently from 𝑀′.

Contracting Blossoms

𝑓

𝑢

𝑣

𝑤

𝑥

𝑦

𝑧

𝑎

𝑏

𝑓′ 𝑓

𝑢

𝑎

𝑏

𝑓′

𝑣′

Algorithm Theory Fabian Kuhn 18

Lemma: Graph 𝐺 has an augmenting path w.r.t. matching 𝑀 iff 𝐺′ has
an augmenting path w.r.t. matching 𝑀′.
• Obtain matchings 𝑀! / 𝑀!′ on 𝐺 / 𝐺′ by toggling matching on stem

Contracting Blossoms

𝑓

𝑢

𝑣

𝑤

𝑥

𝑦

𝑧

toggle matching
on stem

𝑓

𝑢

𝑣

𝑤

𝑥

𝑦

𝑧

𝑓

𝑢

𝑣

toggle matching
on stem

𝑓

𝑢

𝑣

𝑴 = |𝑴𝟏| and 𝑴! = |𝑴𝟏
! |:

• On 𝐺, there is an augm. path w.r.t. 𝑀
iff there is an augm. path w.r.t. 𝑀#

• On 𝐺′, there is an augm. path w.r.t. 𝑀′
iff there is an augm. path w.r.t. 𝑀#!

• We can w.l.o.g. assume that the
root of the stem is a free node.

Algorithm Theory Fabian Kuhn 19

Lemma: Graph 𝐺 has an augmenting path w.r.t. matching 𝑀 iff 𝐺′ has
an augmenting path w.r.t. matching 𝑀′.
• If the root of the blossom is free, any augmenting path w.r.t. 𝑀!

that contains nodes of the blossom can be turned into an
augmenting path that ends at the root of the blossom and consists
of a part inside the blossom and a part outside it.

Contracting Blossoms

𝑣

𝑤

𝑥

𝑦

𝑧

𝑎

𝑏

𝑓′

𝑣′

𝑎

𝑏

𝑓′

Algorithm Theory Fabian Kuhn 20

Edmond’s Blossom Algorithm
Algorithm Sketch:
1. Build a tree for each free node
2. Starting from an explored node 𝑢 at even distance from a free

node 𝑓 in the tree of 𝑓, explore some unexplored edge {𝑢, 𝑣}:

1. If 𝑣 is an unexplored node, 𝑣 is matched to some neighbor 𝑤:
add 𝑤 to the tree (𝑤 is now explored)

2. If 𝑣 is explored and in the same tree:
at odd distance from root à ignore and move on
at even distance from root à blossom found

3. If 𝑣 is explored and in another tree
at odd distance from root à ignore and move on
at even distance from root à augmenting path found

Algorithm Theory Fabian Kuhn 21

Running Time
Finding a Blossom: Restart search on smaller graph

Finding an Augmenting Path: Improve matching

Theorem: The algorithm can be implemented in time 𝑂 𝑚𝑛" .
• DFS to find augmenting path or blossom: 𝑂 𝑚
• Needs to be repeated each time, when a blossom is found

– Contraction of blossom reduces number of nodes by at least 2
– Number of repetitions is ≤ ⁄𝑛 2

• In time 𝑂 𝑚𝑛 , we can find an augmenting path, if there is
one and improve a given non-maximum matching

• Maximum matching has size ≤ ⁄𝑛 2

Algorithm Theory Fabian Kuhn 22

Matching Algorithms
We have seen:
• 𝑶 𝒎𝒏 time alg. to compute a max. matching in bipartite graphs

• 𝑶 𝒎𝒏𝟐 time alg. to compute a max. matching in general graphs

Better algorithms:

• Best known running time (bipartite and general gr.): 𝑶 𝒎 𝒏

Weighted matching:
• Edges have weight, find a matching of maximum total weight
• The problem can also be solved optimally in polynomial time,

both in bipartite graphs and in general graphs
– Algorithms use maximum matching in unweighted graphs as subroutine

Algorithm Theory Fabian Kuhn 23

Vertex Cover vs Matching
Consider a matching 𝑀 and a vertex cover 𝑆

Claim: 𝑀 ≤ |𝑆|

Proof:
• At least one node of every edge 𝑢, 𝑣 ∈ 𝑀 is in 𝑆
• Needs to be a different node for different edges from 𝑀

Algorithm Theory Fabian Kuhn 24

Augmenting Paths
Consider a matching 𝑀 of a graph 𝐺 = (𝑉, 𝐸):
• A node 𝑣 ∈ 𝑉 is called free iff it is not matched

Augmenting Path: A (odd-length) path that starts and ends at a free
node and visits edges in 𝐸 ∖ 𝑀 and edges in 𝑀 alternatingly.

• Matching 𝑀 can be improved using an augmenting path by
switching the role of each edge along the path

free nodes

alternating path

Algorithm Theory Fabian Kuhn 25

Maximum Weight Bipartite Matching
• Let’s again go back to bipartite graphs…

Given: Bipartite graph 𝐺 = 𝑈 ∪̇ 𝑉, 𝐸 with edge weights 𝑤* ≥ 0
Goal: Find a matching 𝑀 of maximum total weight

𝑈 𝑉
𝐸

𝑤? ≥ 0

Algorithm Theory Fabian Kuhn 26

Minimum Weight Perfect Matching
Claim: Max weight bipartite matching is equivalent to finding a
minimum weight perfect matching in a complete bipartite graph.

1. Turn into maximum weight perfect matching
• add dummy nodes to get two equal-sized sides
• add edges of weight 0 to make graph complete bipartite

2. Replace weights: 𝑤$! ≔ max
%

𝑤% − 𝑤$

Algorithm Theory Fabian Kuhn 27

A Dual Problem
Dual problem of the min. weight perfect matching problem
• Assign a variable 𝑎/ ≥ 0 to each node 𝑢 ∈ 𝑈

and a variable 𝑏0 ≥ 0 to each node 𝑣 ∈ 𝑉

• Condition: for every edge (𝒖, 𝒗) ∈ 𝑼×𝑽: 𝒂𝒖 + 𝒃𝒗 ≤ 𝒘𝒖𝒗

Claim: For every perfect matching 𝑀 ∈ 𝑈×𝑉, it holds that

N
/,0 ∈,

𝑤/0 ≥ N
/∈4

𝑎/ +N
0∈5

𝑏0	

Algorithm Theory Fabian Kuhn 28

Optimality Condition
Slack: For each edge 𝑢, 𝑣 and dual values 𝑎/, 𝑏0, we define

𝒔𝒖𝒗 ≔ 𝑤/0 − 𝑎/ − 𝑏0 ≥ 0

Claim: A perfect matching 𝑀 is optimal if for all 𝑢, 𝑣 ∈ 𝑀, 𝑠/0 = 0

• Goal: Find a dual solution 𝑎/, 𝑏0 and a perfect matching such that
the complementary slackness condition is satisfied!
– i.e., for every matching edge 𝑢, 𝑣 , we want 𝑠&' = 0
– We then know that the matching is optimal!

Algorithm Theory Fabian Kuhn 29

Algorithm Overview
• Start with any feasible dual solution 𝑎/, 𝑏0

– i.e., solution satisfies that for all 𝑢, 𝑣 : 𝑤&' ≥ 𝑎& + 𝑏'

• Let 𝐸6 be the edges for which 𝑠/0 = 0
– Recall that 𝑠&' = 𝑤&' − 𝑎& − 𝑏'

• Compute maximum cardinality matching 𝑀 of 𝐸6

Observation: All edges 𝑢, 𝑣 of the matching 𝑀 satisfy 𝑠/0 = 0
• If 𝑀 is a perfect matching, we are done

• If 𝑀 is not a perfect matching, dual solution can be improved
– We will look at this next…

Algorithm Theory Fabian Kuhn 30

Marked Nodes
Define set of marked nodes 𝑳:
• Set of nodes which can be reached on alternating paths on

edges in 𝐸6 starting from unmatched nodes in 𝑈

edges 𝑬𝟎 with 𝒔𝒖𝒗 = 𝟎

optimal matching 𝑴

𝑳𝟎: unmatched nodes in 𝑼

𝑳: all nodes that can be reached
 on alternating paths starting
 from 𝑳𝟎

Algorithm Theory Fabian Kuhn 31

Marked Nodes
Define set of marked nodes 𝑳:
• Set of nodes which can be reached on alternating paths on

edges in 𝐸6 starting from unmatched nodes in 𝑈

edges 𝑬𝟎 with 𝒔𝒖𝒗 = 𝟎

optimal matching 𝑴

𝑳𝟎: unmatched nodes in 𝑼

𝑳: all nodes that can be reached
 on alternating paths starting
 from 𝑳𝟎

Algorithm Theory Fabian Kuhn 32

Marked Nodes – Vertex Cover
Lemma:
a) There are no 𝐸6-edges between 𝑈 ∩ 𝐿 and 𝑉 ∖ 𝐿
b) The set 𝑈 ∖ 𝐿 ∪ 𝑉 ∩ 𝐿 is a vertex cover of size 𝑀

of the graph induced by 𝐸6

Algorithm Theory Fabian Kuhn 33

Improved Dual Solution
Recall: all edges 𝑢, 𝑣 between 𝑈 ∩ 𝐿 and 𝑉 ∖ 𝐿 have 𝑠/0 > 0

New dual solution:
	 𝛿 ≔ min

%∈'∩),	,∈-\/
𝑠%,

𝑎%0 ≔ 3 𝑎%, 	 if	𝑢 ∈ 𝑈\L
𝑎% + 𝛿, if	 𝑢 ∈ 𝑈 ∩ 𝐿	

𝑏,0 ≔ 3 𝑏, , 	 if	𝑣 ∈ 𝑉\L
𝑎, − 𝛿, 	if	 𝑣 ∈ 𝑉 ∩ 𝐿	

Claim: New dual solution is feasible (all 𝑠/0 remain ≥ 0)

Algorithm Theory Fabian Kuhn 34

Improved Dual Solution

Lemma: Obj. value of the dual solution grows by 𝛿 !
" − 𝑀 .

Proof:
𝛿 ≔ min

!∈#∩%,	(∈)\+
𝑤!(, 	 𝑎!, ≔ 8 𝑎!, 	 if	𝑢 ∈ 𝑈\L

𝑎! + 𝛿, if	 𝑢 ∈ 𝑈 ∩ 𝐿 ,	 𝑏(,≔ 8 𝑏(, 	 if	𝑣 ∈ 𝑉\L
𝑎(− 𝛿, 	if	 𝑣 ∈ 𝑉 ∩ 𝐿

Algorithm Theory Fabian Kuhn 35

Termination
Some terminology
• Old dual solution: 𝑎/, 𝑏0, 𝑠/0 ≔ 𝑤/0 − 𝑎/ − 𝑏0
• New dual solution: 𝑎/) , 𝑏0) , 𝑠/0) ≔ 𝑤/0 − 𝑎/) − 𝑏0)

• 𝐸6 ≔ 𝑢, 𝑣 ∶ 𝑠/0 = 0 , 𝐸6) ≔ 𝑢, 𝑣 ∶ 𝑠/0) = 0
• 𝑀, 𝑀) : max. cardinality matchings of graphs ind. By 𝐸6, 𝐸6)

Claim: We can always guarantee that 𝑴 ⊆ 𝑴′.

Algorithm Theory Fabian Kuhn 36

Termination
Lemma: The algorithm terminates in at most 𝑂 𝑛" iterations.

Proof:
• Each iteration: |𝑀)| > 𝑀 or 𝑀) = 𝑀 and 𝑉 ∩ 𝐿) > |𝑉 ∩ 𝐿|

Algorithm Theory Fabian Kuhn 37

Min. Weight Perfect Matching: Summary
Theorem: A minimum weight perfect matching can be computed
in time 𝑂 𝑛7 .

• First dual solution: e.g., 𝑎/ = 0, 𝑏0 = min
/∈4

𝑤/0

• Compute set 𝐸6: 𝑂 𝑛"

• Compute max. cardinality matching of graph induced by 𝐸6
– First iteration: 𝑂 𝑛(⋅ 𝑂 𝑛 = 𝑂 𝑛)

– Other iterations: 𝑂 𝑛(⋅ 𝑂 1 + 𝑀! − 𝑀

Algorithm Theory Fabian Kuhn 38

Matching Algorithms
We have seen:
• 𝑶 𝒎𝒏 time alg. to compute a max. matching in bipartite graphs

• 𝑶 𝒎𝒏𝟐 time alg. to compute a max. matching in general graphs

Better algorithms:

• Best known running time (bipartite and general gr.): 𝑶 𝒎 𝒏

Weighted matching:
• Edges have weight, find a matching of maximum total weight
• Bipartite graphs: polynomial-time primal-dual algorithm
• General graphs: can also be solved in polynomial time

 (Edmond’s algorithms is used as blackbox)

