

Algorithm Theory

Chapter 6 Graph Algorithms

Maximum Matching

Fabian Kuhn

Matching

Matching: Set of pairwise non-incident edges

Maximal Matching: A matching s.t. no more edges can be added

Maximum Matching: A matching of maximum possible size

Perfect Matching: Matching of size $\frac{n}{2}$ (every node is matched)

Algorithm Theory Fabian Kuhn 2

Bipartite Graph

Definition: A graph $G = (V, E)$ is called bipartite iff its node set can be partitioned into two parts $V = V_1 \cup V_2$ such that for each edge $\{u, v\} \in E$,

 $|\{u, v\} \cap V_1| = 1.$

• Thus, edges are only between the two parts

Reducing to Maximum Flow

• Like edge-disjoint paths…

Running Time of Max. Bipartite Matching

Theorem: A maximum matching M^* of a bipartite graph can be computed in time $O(m \cdot |M^*|) = O(m \cdot n)$.

- The problem can be reduced to a maximum flow problem on a flow network with $O(m)$ edges and all capacities $= 1$
- The Ford-Fulkerson algorithm solves the maximum flow problem in time $O(m \cdot C)$, where C is the value of the maximum flow (i.e., $C = |M^*|$).
- A maximum matching M^* has size $|M^*| \leq n/2 = O(n)$.

Perfect Matching?

- There can only be a perfect matching if both sides of the partition have size $n/2$.
- There is no perfect matching, iff there is an $s-t$ cut of size $<$ $n/_{2}$ in the flow network.

$s-t$ Cuts

Partition (A, B) of node set such that $s \in A$ and $t \in B$

- If $v_i \in A$: edge (v_i, t) is in cut (A, B)
- If $u_i \in B$: edge (s, u_i) is in cut (A, B)
- Otherwise (if $u_i \in A$, $v_i \in B$), all edges from u_i to some $v_j \in B$ B are in cut (A, B)

Algorithm Theory **Fabian Kuhn** Fabian Kuhn 7

Hall's Theorem

Theorem: A bipartite graph $G = (U \cup V, E)$ for which $|U| = |V|$ has a perfect matching if and only if $\forall U' \subseteq U: |N(U')| \geq |U'|$

where $N(U') \subseteq V$ is the set of neighbors of nodes in U'.

Proof: No perfect matching \Leftrightarrow some *s*-*t* cut has capacity $\lt n/2$

1. Assume there is U' for which $|N(U')| < |U'|$:

Hall's Theorem

Theorem: A bipartite graph $G = (U \cup V, E)$ for which $|U| = |V|$ has a perfect matching if and only if $\forall U' \subseteq U: |N(U')| \geq |U'|$

where $N(U') \subseteq V$ is the set of neighbors of nodes in U'.

Proof: No perfect matching \Leftrightarrow some *s*-*t* cut has capacity $\lt n/2$

2. Assume that there is a cut (A, B) of capacity $\lt n/2$

Hall's Theorem

Theorem: A bipartite graph $G = (U \cup V, E)$ for which $|U| = |V|$ has a perfect matching if and only if $\forall U' \subseteq U: |N(U')| \geq |U'|$

where $N(U') \subseteq V$ is the set of neighbors of nodes in U'.

Proof: No perfect matching \Leftrightarrow some *s*-*t* cut has capacity $\lt n$

2. Assume that there is a cut (A, B) of capacity $\lt n$

 $x + y + z <$ \boldsymbol{n} $\overline{\mathbf{2}}$ $|N(U')| \leq y + z \implies |N(U')| < |U'|$ \bm{U}' = \boldsymbol{n} $\frac{n}{2} - x$ \implies $y + z < |U'|$ $y + z <$ \boldsymbol{n} $\frac{1}{2}-x$

What About General Graphs

- Can we efficiently compute a maximum matching if G is not bipartite?
- How good is a maximal matching?
	- A matching that cannot be extended…
- **Compare the size of a maximal and a maximum matching**

• Each maximal matching edge is adjacent to \leq 2 maximum matching edges

Algorithm Theory **Fabian Kuhn** Fabian Kuhn 11

Maximal vs. Maximum Matching

Theorem: For any maximal matching M and any maximum matching M^* , it holds that

$$
|M| \geq \frac{|M^*|}{2}.
$$

Proof:

For each edge $e \in M$, let $\mu(e) \subseteq M^*$ be the adjacent edges in M^*

Every edge in M^* is adjacent to some edge of M:

$$
|M^*| = \left| \bigcup_{e \in M} \mu(e) \right| \le \sum_{e \in M} |\mu(e)| \le 2|M|.
$$

Augmenting Paths

Consider a matching M of a graph $G = (V, E)$:

A node $v \in V$ is called **free** iff it is not matched

Augmenting Path: A (odd-length) path that starts and ends at a free node and visits edges in $E \setminus M$ and edges in M alternatingly.

augmenting path

Matching M can be improved using an augmenting path by switching the role of each edge along the path

Algorithm Theory **Election Community** Fabian Kuhn **13**

Existence of Augmenting Paths

Theorem: A matching M of $G = (V, E)$ is maximum if and only if there is no augmenting path.

Proof:

• Consider non-max. matching M and max. matching M^* and define

 $F \coloneqq M \setminus M^*$, $F^* \coloneqq M^* \setminus M$

- Note that $F \cap F^* = \emptyset$ and $|F| < |F^*|$
- Each node $v \in V$ is incident to at most one edge in both F and F^*
- $F \cup F^*$ induces even cycles and paths

Finding Augmenting Paths

Blossoms

Contracting Blossoms

Lemma: Graph G has an augmenting path w.r.t. matching M iff G' has an augmenting path w.r.t. matching $M'.$

Also: The matching M can be computed efficiently from M'.

Algorithm Theory **Election Community** Fabian Kuhn **Fabian Kuhn** 17

Contracting Blossoms

Lemma: Graph G has an augmenting path w.r.t. matching M iff G' has an augmenting path w.r.t. matching $M'.$

• Obtain matchings M_1 / $M_1{}'$ on G / G' by toggling matching on stem

- $|M| = |M_1|$ and $|M'| = |M'_1|$:
- On G , there is an augm. path w.r.t. M iff there is an augm. path w.r.t. M_1
- On G' , there is an augm. path w.r.t. M' iff there is an augm. path w.r.t. M'_1
- We can w.l.o.g. assume that the root of the stem is a free node.

Contracting Blossoms

Lemma: Graph G has an augmenting path w.r.t. matching M iff G' has an augmenting path w.r.t. matching $M'.$

• If the root of the blossom is free, any augmenting path w.r.t. M_1 that contains nodes of the blossom can be turned into an augmenting path that ends at the root of the blossom and consists of a part inside the blossom and a part outside it.

Algorithm Sketch:

- 1. Build a tree for each free node
- 2. Starting from an explored node u at even distance from a free node f in the tree of f, explore some unexplored edge $\{u, v\}$:
	- 1. If v is an unexplored node, v is matched to some neighbor w : add w to the tree (w is now explored)
	- 2. If ν is explored and in the same tree: at odd distance from root \rightarrow ignore and move on at even distance from root \rightarrow **blossom found**
	- 3. If ν is explored and in another tree at odd distance from root \rightarrow ignore and move on at even distance from root \rightarrow **augmenting path found**

Finding a Blossom: Restart search on smaller graph

Finding an Augmenting Path: Improve matching

Theorem: The algorithm can be implemented in time $O(mn^2)$.

- DFS to find augmenting path or blossom: $O(m)$
- Needs to be repeated each time, when a blossom is found
	- Contraction of blossom reduces number of nodes by at least 2
	- Number of repetitions is $\leq n/2$
- In time $O(mn)$, we can find an augmenting path, if there is one and improve a given non-maximum matching
- Maximum matching has size $\leq n/2$

We have seen:

- **O(mn)** time alg. to compute a max. matching in *bipartite graphs*
- \cdot $\theta(mn^2)$ time alg. to compute a max. matching in *general graphs*

Better algorithms:

• Best known running time (bipartite and general gr.): $O(m\sqrt{n})$

Weighted matching:

- Edges have weight, find a matching of **maximum total weight**
- The problem can also be solved optimally in polynomial time, both in bipartite graphs and in general graphs
	- Algorithms use maximum matching in unweighted graphs as subroutine

Vertex Cover vs Matching

Consider a matching M and a vertex cover S

Claim: $|M| \leq |S|$

Proof:

- At least one node of every edge $\{u, v\} \in M$ is in S
- Needs to be a different node for different edges from M

Augmenting Paths

Consider a matching M of a graph $G = (V, E)$:

A node $v \in V$ is called **free** iff it is not matched

Augmenting Path: A (odd-length) path that starts and ends at a free node and visits edges in $E \setminus M$ and edges in M alternatingly.

alternating path

Matching M can be improved using an augmenting path by switching the role of each edge along the path

Algorithm Theory Fabian Kuhn 24

Maximum Weight Bipartite Matching

BURG 疆

• Let's again go back to bipartite graphs…

Given: Bipartite graph $G = (U \cup V, E)$ with edge weights $w_e \geq 0$

Goal: Find a matching M of maximum total weight

Minimum Weight Perfect Matching

Claim: Max weight bipartite matching is equivalent to finding a minimum weight perfect matching in a complete bipartite graph.

- 1. Turn into maximum weight perfect matching
	- add dummy nodes to get two equal-sized sides
	- add edges of weight 0 to make graph complete bipartite

2. Replace weights:
$$
w'_e := \max_f \{w_f\} - w_e
$$

A Dual Problem

Dual problem of the min. weight perfect matching problem

- Assign a variable $a_u \geq 0$ to each node $u \in U$ and a variable $b_n \geq 0$ to each node $v \in V$
- **Condition:** for every edge $(u, v) \in U \times V$: $a_u + b_v \leq w_{uv}$

Claim: For every perfect matching $M \in U \times V$, it holds that

$$
\sum_{(u,v)\in M} w_{uv} \ge \sum_{u\in U} a_u + \sum_{v\in V} b_v
$$

Optimality Condition

Slack: For each edge (u, v) and dual values a_u , b_v , we define $s_{uv} := w_{uv} - a_u - b_v \ge 0$

Claim: A perfect matching M is optimal if for all $(u, v) \in M$, $s_{uv} = 0$

- **Goal:** Find a dual solution a_{μ} , b_{ν} and a perfect matching such that the complementary slackness condition is satisfied!
	- i.e., for every matching edge (u, v) , we want $s_{uv} = 0$
	- We then know that the matching is optimal!

Algorithm Theory Fabian Kuhn 28

Algorithm Overview

- Start with any feasible dual solution a_u , b_v – i.e., solution satisfies that for all (u, v) : $w_{uv} \ge a_u + b_v$
- Let E_0 be the edges for which $S_{\mu\nu} = 0$
	- Recall that $s_{uv} = w_{uv} a_u b_v$
- Compute maximum cardinality matching M of E_0

Observation: All edges (u, v) of the matching M satisfy $s_{uv} = 0$

- If M is a perfect matching, we are done
- If M is not a perfect matching, dual solution can be improved
	- We will look at this next…

Marked Nodes

Define set of marked nodes :

• Set of nodes which can be reached on alternating paths on edges in E_0 starting from unmatched nodes in U

edges \mathbf{E}_0 with $\mathbf{s}_{uv} = \mathbf{0}$

optimal matching

: unmatched nodes in

: all nodes that can be reached on alternating paths starting from L_0

Marked Nodes

Define set of marked nodes :

• Set of nodes which can be reached on alternating paths on edges in E_0 starting from unmatched nodes in U

edges \mathbf{E}_0 with $\mathbf{s}_{uv} = \mathbf{0}$

optimal matching

: unmatched nodes in

: all nodes that can be reached on alternating paths starting from L_0

Lemma:

- a) There are no E_0 -edges between $U \cap L$ and $V \setminus L$
- b) The set $(U \setminus L) \cup (V \cap L)$ is a vertex cover of size $|M|$ of the graph induced by E_0

Improved Dual Solution

Recall: all edges (u, v) between $U \cap L$ and $V \setminus L$ have $s_{uv} > 0$

New dual solution:

$$
\delta := \min_{u \in U \cap L, v \in V \backslash L} \{s_{uv}\}
$$

\n
$$
a'_u := \begin{cases} a_u, & \text{if } u \in U \backslash L \\ a_u + \delta, & \text{if } u \in U \cap L \end{cases}
$$

\n
$$
b'_v := \begin{cases} b_v, & \text{if } v \in V \backslash L \\ a_v - \delta, & \text{if } v \in V \cap L \end{cases}
$$

Claim: New dual solution is feasible (all s_{uv} remain ≥ 0)

Improved Dual Solution

Lemma: Obj. value of the dual solution grows by $\delta\left(\frac{n}{2}\right)$ $\frac{n}{2} - |M|$).

Proof:

$$
\delta := \min_{u \in U \cap L, v \in V \backslash L} \{w_{uv}\}, \qquad a'_u := \begin{cases} a_u, & \text{if } u \in U \backslash L \\ a_u + \delta, & \text{if } u \in U \cap L \end{cases} \qquad b'_v := \begin{cases} b_v, & \text{if } v \in V \backslash L \\ a_v - \delta, & \text{if } v \in V \cap L \end{cases}
$$

Some terminology

- Old dual solution: a_{u} , b_{v} , s_{uv} = w_{uv} a_{u} b_{v}
- New dual solution: a'_u , b'_v , $s'_{uv} := w_{uv} a'_u b'_v$
- $E_0 := \{(u, v) : s_{uv} = 0\}, E'_0 := \{(u, v) : s'_{uv} = 0\}$
- M , M' : max. cardinality matchings of graphs ind. By E_0 , E'_0

Claim: We can always guarantee that $M \subseteq M'$.

Lemma: The algorithm terminates in at most $O(n^2)$ iterations.

Proof:

• Each iteration: $|M'| > |M|$ or $M' = M$ and $|V \cap L'| > |V \cap L|$

Min. Weight Perfect Matching: Summary

Theorem: A minimum weight perfect matching can be computed in time $O(n^4)$.

- First dual solution: e.g., $a_u = 0$, $b_v = \min_{u \in U}$ \overline{u} ∈U $W_{\mathcal{U}\mathcal{V}}$
- Compute set $E_0: O(n^2)$
- Compute max. cardinality matching of graph induced by E_0
	- First iteration: $O(n^2) \cdot O(n) = O(n^3)$
	- Other iterations: $O(n^2) \cdot O(1 + |M'| |M|)$

We have seen:

- **O(mn)** time alg. to compute a max. matching in *bipartite graphs*
- \cdot $\theta(mn^2)$ time alg. to compute a max. matching in *general graphs*

Better algorithms:

• Best known running time (bipartite and general gr.): $O(m\sqrt{n})$

Weighted matching:

- Edges have weight, find a matching of **maximum total weight**
- *Bipartite graphs*: polynomial-time primal-dual algorithm
- *General graphs*: can also be solved in polynomial time (Edmond's algorithms is used as blackbox)