universitatfreiburg

Algorithm Theory — WS 2024/25

Chapter 7 : Randomization |
Introduction / Primality Test / Randomized Quicksort

Fabian Kuhn
Dept. of Computer Science
Algorithms and Complexity

Randomization

Randomized Algorithm:
* An algorithm that uses (or can use) random coin flips in order to make decisions

We will see: randomization can be a powerful tool to
* Make algorithms faster
* Make algorithms simpler

* Make the analysis simpler
* Sometimes it’s also the opposite...

* Allow to solve problems (efficiently) that cannot be solved (efficiently) without randomization
* True in some computational models (e.g., for distributed algorithms)
* Not clear in the standard sequential model

universitatfreiburg Fabian Kuhn — Algorithm Theory

Contention Resolution

A simple example to start (from distributed computing / networking)
* Allows to introduce important concepts
* ...and to repeat some basic probability theory

Setting:

* n processes, 1 resource
(e.g., communication channel, shared database, ...)

There are time slots 1,2,3, ...

In each time slot, only one process can access the resource

All processes need to regularly access the resource

If process i tries to access the resource in slot t:
» Successful iff no other process tries to access the resource in slot t

universitatfreiburg Fabian Kuhn — Algorithm Theory

Algorithm

Algorithm Ideas:
* Accessing the resource deterministically seems hard

* need to make sure that processes access the resource at different times
 or at least: often only a single process tries to access the resource

* Randomized solution:
In each time slot, each process tries with probability p.

Analysis:

* How large should p be?

 How long does it take until some process x succeeds?
 How long does it take until all processes succeed?
 What are the probabilistic guarantees?

universitatfreiburg Fabian Kuhn — Algorithm Theory

Analysis

Events:

* A, process x tries to access the resource in time slot ¢

« Complementary event: A, ¢

—

[E,;(qu,t) — p'

* 8, process x is successful in time slot ¢

* Success probability (for process x):

P(Sxe) = P(Are) - | |P(Ae) =p- L—p)""

VEX

universitatfreiburg

P(Ayx:)=1-p

X is successful if

* x tries to access
resource and

* no other process tries
to access resource

Fabian Kuhn — Algorithm Theory

choose p that
maximizes P(Sx,t)

Fixing p

“

Lo 1+ —}) ="
W =X

* P(Sy:) =p(1 —p)* 1 is maximized for

1 1 1\ 1 \
p=— = [P(sx,t)=—(1——) r —

wnl 1 e

converges to 1/ forn —» o

* Asymptotics:

1 1\" 1 1\ 1
Forn = 2: —S(l——) <—<(1——) < =
4 n e n 2
* Success probability:
L. P(Sy:) < !
en X = 2n

—
—_——

universitatfreiburg Fabian Kuhn — Algorithm Theory

Time Until First Success 1 1

ewn

Random Variable T',: @;: P(Sx,t) = p(1 —p)"1

T, = tif proc. x is successful in slot t for the first time

* Distribution:
P(T, =1) =4, P(Ty=2)=(1-q) g,

P(T,=)=1-q)" "¢

* T, is geometrically distributed with parameter

B(s.) = 2(1-3) >3
E B SO n en’
* Expected time until first success:
= 1
E[T,] :=zt-p(Tx —)=-<en
o q ___

universitatfreiburg Fabian Kuhn — Algorithm Theory

Time Until First Success n A

- o
(e < &€
Failure Event F, ,: Process X does not succeed in tlme slots 1 -~
= \ ~%
-2 en
Q\ ev\)\< e
: . A=
* The events 8, ; are independent for different ¢: e

N—

P(Fee) = P (ﬁ 5) = ﬁ P(S:) = (1-P(5:1)) = (1 -)"

—

—————

* We know that P(S,,.) > Ven:
— t

P(Fy.) < (1 — %) < e/en

{ ————
|

—_—

1 — 1/6Tl < e—l/en

universitatfreiburg Fabian Kuhn — Algorithm Theory

Time Until First Success € 25 Qun
& c(qn

No success by time t: [P)(Tx,t) < g~ en

* t=[en]: P(Fyre) < Ye
* Generally, if t = ©(n) : constant success probability
J ‘ clnn _ (,Inn\¢ _ ¢
st=[c-en-Innl: P(Fri) <Ypernn = Yne ° (") =n
- o PE—

* For success probability 1 — 1/, ., we therefore need t = ©(nlogn).

* We say that x succeeds with high probability in O(nlogn) time.
A —

. . 1
With probability > 1 — y Choice of ¢ only affects the

S S RS CW hidden constant in the big-O notation.
y L - Y.

universitatfreiburg Fabian Kuhn — Algorithm Theory

Time Until All Processes Succeed

Event F;: some process has not succeeded by time t P(AUB) =P(A) + P(B) —P(ANB)

- n < P(4) + P(B)
Fe = U Fat
— x=1 T

Union Bound: For events &4, ..., &,

k k
P Uex < ZP(gx)

X
— ~+/Qu

W(Fj:-e\ <€

Probability that not all processes have succeeded by time t/

n n PN
]P)(?t) —]P (U ?X,t> S z P(Tx,t) < TL:: e_t/en \
x=1 x=1 — = =
< — -

——— —_—%6

universitatfreiburg Fabian Kuhn — Algorithm Theory 10

Time Until All Processes Succeed

Claim: With high probability, all processes succeed in the first O(nlogn) time slots.

Proof:
°]P(:‘Z—'t) <n- e—t/en
*Sett=[(c+1)-en-Innj

(c+1)-enlnn 1 1

. — p.p—(ct)Inn _ | N
P(Fe) < n-e e —n-e€ =n nc+l — pc

————

Remarks:

* O(nlogn) time slots are necessary for all processes to succeed even with reasonable (constant) probability

* O(nlogn) time slots are also necessary in expectation for all processes to succeed at least once.

universitatfreiburg Fabian Kuhn — Algorithm Theory 11

Primality Testing N

]!

a-b

n
| o) =——
o Pk

Problem: Given a natural numbern = 2, is n a prime number?

Simple primality test:
1. ifniseven then

2 return (n = 2)

3. fori:=1to|\/n/2|do
4. if 2i + 1 divides n then
5

6

return false
return true

* Running time: 0(y/n)

universitatfreiburg

If n is not prime, one of the
prime factors p is p < [Vn|:

< 2i+1<|yn|=i< ‘/7%‘

Size of the input O(logn) bits:

V1 is exponential in the size of
< the input.

Fabian Kuhn — Algorithm Theory

12

A Better Algorithm?

* How can we test primality efficiently? 7 = {1,...,p — 1}, multiplication mod p
* We need a little bit of basic number theory...

Square Roots of Unity: In Z,,, where p is a prime, the only solutions to the
. 2 — - —
equationx“ = 1 (mod p) are x = +1 (mod p)

for an integer c

x% =1 (mod p)
x2—1=0(modp) ™= (x+1)-(x—1)=c-p
(x+1)-(x — 1) = 0 (mod p) 1
Not true if p is not prime: p is a prime factor of x + 1 or of x — 1:
p=1 x=4 &= 1=0(modp)or
x% = 16 = 1 (mod 15) x —1 = 0 (mod p)

* If we find an x Z +1 (mod n) such that x> = 1 (mod n), we can conclude that n is not a prime.

universitatfreiburg Fabian Kuhn — Algorithm Theory

Algorithm Idea X al 2 a (wed p)

Claim: Let p > 2 be a prime such that p — 1 = 2°d for aninteger s > 1 and some odd integerd > 1.
Then for allg € Zp,

=1 (mod p) or a* % = —1 (mod p) for some 0 < r < s.
=
Proof: ERecaII that x> = 1 (modp) © x = —1,1 (mod p)
* Fermat’s Little Theorem: For every prime p and all @ € Zj, : aP~" = 1 (mod p) Zs-ic{
« Consider xg, X1, ..., X5, Where x; = a% for §; = pz_il =25"t.q Q
p—1 p—1 p—1 p—1
-5_0 = p —]_l l51 = Tl l62 = T' és_l = 25_11 lSS = 35
=25.d _=25"1.q _=252.¢ =2.d =d

- — <= x, e1-1,

*Vi<s:ix = xl+1, thus x; =1 (modp) = x;4; = —1,1 (modp) %='
- Xt = % ey 13

Fermat’s Little Theorem — Xo = 1 (mod p)

Thus:Vi<s:x;=1(modp)ordi <s:x; =—1(modp). (which directly implies the claim.)

universitatfreiburg Fabian Kuhn — Algorithm Theory 14

Primality Test

We have: If n is an odd prime andn — 1 = 2°d for an integer s = 1 and an odd integer d > 1.
Thenforalla € {1, ...,n — 1},

a® =1 (modn) or a2’ % =—1 (modn) forsome0 <r < s. (+)

Idea: If we findan a € {1, ...,n — 1} such that

a? =1 (modn) and a? €4 %= —1 (modn) forall0 <r <s,
we can conclude that n is not a prime.

—(*)

* For every odd composite n > 2, at least 3/, of all a € {2, ...,n — 2} satisfy condition —(*).

 How can we find such a witness a efficiently?
ﬁ Idea: pick a at random.

universitatfreiburg Fabian Kuhn — Algorithm Theory 15

Miller-Rabin Primality Test

* Given a natural numbern = 2, isn a prime number?

—

Miller-Rabin Test:

if n is even then return (n = 2) P Ty
compute s, d such thatn — 1 = 2°d;

——

choose a € {2, ...,n — 2} uniformly at random;
d -,

x = a“ mod n;

forr:=1tos—1do L (*) holds
X :=£2 mod n;

1

2

3

4

5. |ifx =1 orx = n — 1 then return probably prime;
6

7

8 if x = n — 1 then return probably prime;
9

return composite;

universitatfreiburg Fabian Kuhn — Algorithm Theory

16

Analysis

Theorem:
* |If nis prime, the Miller-Rabin test always returns probably prime.
* If n is composite, the Miller-Rabin test returns composite with probability at least 3/,.

{2,...,n— 2}: all possible a
—

HEEIE BN BN
"

good a : 3/, of all possible a

Proof:

* |If nis prime, the test works for all values of a
* |f nis composite, we need to pick a good witness a

Corollary: If the Miller-Rabin test is repeated k times, it fails to detect a composite number n with
probability at most 4.

universitatfreiburg Fabian Kuhn — Algorithm Theory 17

Running Time

Cost of Modular Arithmetic:

* Representation of a number x € Z,: 0(logn) bits

* Cost of adding two numbers x + y mod n:

* Cost of multiplying two numbers x - y mod n:
* Done naively, this takes time 0 (log? n)

* It’s like multiplying degree O (logn) polynomials
—> use FFT tocomputez = x - y

universitatfreiburg

Time: O(logn)

Time: O(logn - loglogn - logloglogn)

Fabian Kuhn — Algorithm Theory

18

{ |

Running Time

. _ac d o _ I)L
Cost of exponentiation Xx® mod n: X = Q(
* Can be done using O(log d) multiplications 0| oo
X = X =

* Base-2 representationof d: d = Z%lzoégz] d; 2!

* Fast exponentiation:

1. y=1;
2. fori:=|log,d|to0do
3. y=y'modn;,
4, ifd; =1theny =y -x modn;
5 returrT;?_
Ry 2
* Example: d = 22 = 10110, x4% = ((12 - x)?) . X
= = = — —
\

universitatfreiburg Fabian Kuhn — Algorithm Theory

Running Time

Theorem: One iteration of the Miller-Rabin test can be implemented with running time
O(log?n - loglogn - logloglogn). = 5((‘,&1“\

if x = n — 1 then return probably prime;

1. ifnis even then return (n = 2)

2. compute s, d suchthatn — 1 = 2°d; - Time O(logn)

3. choosea € {2,...,n — 2} uniformly at random;

4. x:=a®modn; O(logd) = O0(logn) multiplications
5. ifx =’I or x = n — 1 then return probably prime;

6. forr:=1tos—1do s = O(logn) iterations

7. X = J?mod n; 1 multiplication per iteration

8.

9.

return composite;
0(logn) multiplications = time 0(log? n - loglogn - logloglogn)

universitatfreiburg Fabian Kuhn — Algorithm Theory — 20

Deterministic Primality Test

If a conjecture known as the generalized Riemann hypothesis (GRH) is true, the Miller-Rabin test
can be turned into a polynomial-time, deterministic algorithm

- Itis then sufficient to try all a € {1, ..., 21n® n}

It has long not been proven whether a deterministic, polynomial-time algorithm exists

hides factors polynomial in loglogn

In 2002, Agrawal, Kayal, and Saxena gave an @(log12 n)-time deterministic algorithm

* Has been improved to é(log6 n)

—

In practice, the randomized Miller-Rabin test is still the fastest algorithm

universitatfreiburg Fabian Kuhn — Algorithm Theory 21

Randomized Quicksort

pivot

l l partition

T —

‘ I sort Ay and A, ‘ I

\/ recursively \/

Randomized Quicksort:

pick pivot uniformly at random

universitét‘freiburg Fabian Kuhn — Algorithm Theory

Randomized Quicksort Analysis

Randomized Quicksort: pick uniform random element as pivot

Running Time of sorting n elements:

* Let us just count the number of comparisons
\

* |In the partitioning step, all n — 1 non-pivot elements have to be compared to the pivot

* Number of comparisons: depends on choice of pivot

n—1 4+ #comparisons in recursive calls

———

* If rank of pivot is 7: recursive calls withr — 1 and n — r elements
=

r—1 || n—r

—

1,23, ..., r—1,r,r+1,.., n—1n

universitatfreiburg Fabian Kuhn — Algorithm Theory

23

Law of Total Expectation

* Given a random variable X and
e —————

* asetof events 44, ..., A; that partition ()

* E.g., for asecond random variable ¥, we could have A; = {w € O : V(w) = i}

Law of Total Expectation

ELX] = i_“_ ELX | 4y ZP(Y y)-EX|Y = y]

a.

Example: | | Clearly: E[X] = 1+2+3+44546 _ o ¢
* X: outcome of rolling a die —— £
« A, = {Xiseven}, A; = {X is odd}
= [—
ml E[X] = E[X|A] - P(Ap) + E[X]|A,4] - P(41),
_ _1 _ =1
Z i é AO \ =4 B /2 Y -—‘3 /‘2.;
= 3.5

universitatfreiburg Fabian Kuhn — Algorithm Theory

24

Randomized Quicksort Analysis

Random variables:

e (C: total number of comparisons (for a given array of length n)

e R: rank of first pivot Linearity of Expectation:

e Cy, C,: number of comparisons for the 2 recursive calls E[X + Y] = E[X] + E[Y]
=»€ ;T' p /

E[C]=En—-1+C,+C.] =n—-1+E|[C,] + E[C,]

—_—

Law of Total Expectation:

n
E[C]=) P(R=71)-E[CIR =T1]
:_? r;l T— | AR
Expected #comparisons — z P(R=71)-(n—1+E[C,R = 7] +E[C,|R =7])
to sort array of length n 4 T e a——
=
Expected #comparisons to Expected #comparisons to
sort array of lengthr — 1 sort array of lengthn —r

universitatfreiburg Fabian Kuhn — Algorithm Theory

Randomized Quicksort Analysis

1
We have seen that: /n

z —r) (n—1+ E[Cy|R =71] + E[C/|R =T])

A ———

Define: T(n): expected number of comparisons when sorting n elements
E[C] =T(n)
E[CR=7] =T =1)
E[C/IR=7r]=T(n —1)

R ion:
ecursion - , . ﬁ
T =) — (n=1+T(- 1) +T(n-1)
r=1

T(0)=T1)=0

k—, —J
universitatfreiburg Fabian Kuhn — Algorithm Theory

26

