
Algorithm Theory – WS 2024/25

Chapter 7 : Randomization I
Introduction / Primality Test / Randomized Quicksort

Fabian Kuhn
Dept. of Computer Science
Algorithms and Complexity

Randomization

Randomized Algorithm:
• An algorithm that uses (or can use) random coin flips in order to make decisions

We will see: randomization can be a powerful tool to
• Make algorithms faster
• Make algorithms simpler
• Make the analysis simpler
• Sometimes it’s also the opposite…

• Allow to solve problems (efficiently) that cannot be solved (efficiently) without randomization
• True in some computational models (e.g., for distributed algorithms)
• Not clear in the standard sequential model

Fabian Kuhn – Algorithm Theory 2

Contention Resolution

A simple example to start (from distributed computing / networking)
• Allows to introduce important concepts
• … and to repeat some basic probability theory

Setting:
• 𝑛 processes, 1 resource

(e.g., communication channel, shared database, …)
• There are time slots 1,2,3, …
• In each time slot, only one process can access the resource
• All processes need to regularly access the resource
• If process 𝑖 tries to access the resource in slot 𝑡:
• Successful iff no other process tries to access the resource in slot 𝑡

Fabian Kuhn – Algorithm Theory 3

Algorithm

Algorithm Ideas:
• Accessing the resource deterministically seems hard
• need to make sure that processes access the resource at different times
• or at least: often only a single process tries to access the resource

• Randomized solution:
In each time slot, each process tries with probability 𝑝.

Analysis:
• How large should 𝑝 be?
• How long does it take until some process 𝑥 succeeds?
• How long does it take until all processes succeed?
• What are the probabilistic guarantees?

Fabian Kuhn – Algorithm Theory 4

Analysis

Events:
• 𝓐𝒙,𝒕: process 𝑥 tries to access the resource in time slot 𝑡
• Complementary event: 𝒜!,#

ℙ 𝒜!,# = 𝑝, ℙ 𝒜!,# = 1 − 𝑝

• 𝓢𝒙,𝒕: process 𝑥 is successful in time slot 𝑡

𝒮$,% = 𝒜$,% ∩ 1
&'$

𝒜&,%

• Success probability (for process 𝑥):

𝒙 is successful if
• 𝑥 tries to access

resource and
• no other process tries

to access resource

ℙ 𝒮!,# = ℙ 𝒜!,# ⋅&
$%!

ℙ 𝒜$,# = 𝑝 ⋅ 1 − 𝑝 &'(choose 𝑝 that
maximizes ℙ 𝒮$,%

Fabian Kuhn – Algorithm Theory 5

Fixing 𝒑

• ℙ 𝒮$,% = 𝑝 1 − 𝑝 ()* is maximized for

𝒑 =
𝟏
𝒏 ⟹ ℙ 𝒮$,% =

1
𝑛 1 −

1
𝑛

()*

• Asymptotics:

For 𝑛 ≥ 2:
1
4 ≤ 1 −

1
𝑛

(
<
1
𝑒 < 1 −

1
𝑛

()*
≤
1
2

• Success probability:
𝟏
𝒆𝒏 < ℙ 𝓢𝒙,𝒕 ≤

𝟏
𝟐𝒏

converges to ⁄$ % for 𝑛 → ∞

Fabian Kuhn – Algorithm Theory 6

Time Until First Success

Random Variable 𝑻𝒙:
• 𝑇$ = 𝑡 if proc. 𝑥 is successful in slot 𝑡 for the first time

• Distribution:

• 𝑇$ is geometrically distributed with parameter

𝑞 = ℙ 𝒮$,% =
1
𝑛
1 −

1
𝑛

()*
>
1
𝑒𝑛
.

• Expected time until first success:

𝔼 𝑻𝒙 ≔J
%+*

,

𝑡 ⋅ ℙ 𝑇$ = 𝑡 =
𝟏
𝒒 < 𝒆𝒏

𝑞 ≔ ℙ 𝒮!,# = 𝑝 1 − 𝑝 &'$

ℙ 𝑇$ = 1 = 𝑞, ℙ 𝑇$ = 2 = 1 − 𝑞 ⋅ 𝑞, …

ℙ 𝑇$ = 𝑡 = 1 − 𝑞 %)* ⋅ 𝑞

Fabian Kuhn – Algorithm Theory 7

Time Until First Success

Failure Event 𝓕𝒙,𝒕: Process 𝑥 does not succeed in time slots 1,… , 𝑡

ℱ$,% =1
-+*

%

𝒮$,-

• The events 𝒮$,% are independent for different 𝑡:

ℙ ℱ$,% = ℙ 1
-+*

%

𝒮$,- =O
-+*

%

ℙ 𝒮$,- = 1 − ℙ 𝒮$,*
%
= 1 − 𝑞 %

• We know that ℙ 𝒮$,- > ⁄* .(:

ℙ ℱ$,% < 1 −
1
𝑒𝑛

%
≤ 𝑒) /% .(

∀𝜶 ∈ ℝ ∶ 𝟏 + 𝜶 ≤ 𝒆𝜶

𝑒!
1 + 𝛼

1 − #1 𝑒𝑛 ≤ 𝑒! ⁄# $%

Fabian Kuhn – Algorithm Theory 8

Time Until First Success

No success by time 𝑡: ℙ ℱ$,% < 𝑒) ⁄" #$

• 𝒕 = 𝒆𝒏 : ℙ 𝓕𝒙,𝒕 < ⁄𝟏 𝒆

• Generally, if 𝑡 = Θ 𝑛 : constant success probability

• 𝒕 = 𝒄 ⋅ 𝒆𝒏 ⋅ 𝐥𝐧𝒏 : ℙ 𝓕𝒙,𝒕 < C𝟏 𝒆𝒄⋅𝐥𝐧 𝒏 = ⁄𝟏 𝒏𝒄

• For success probability 1 − ⁄* (% , we therefore need 𝑡 = Θ(𝑛 log 𝑛).

• We say that 𝑥 succeeds with high probability in 𝑂(𝑛 log 𝑛) time.

𝑒.⋅01 & = 𝑒01 &
.
= 𝑛.

With probability ≥ 1 − *
(%

for any constant 𝑐 > 0.
Choice of 𝑐 only affects the

hidden constant in the big-O notation.

Fabian Kuhn – Algorithm Theory 9

Time Until All Processes Succeed

Event 𝓕𝒕: some process has not succeeded by time 𝑡

ℱ% =Y
$+*

(

ℱ$,%

Union Bound: For events ℰ*, … , ℰ1 ,

ℙ Y
$

1

ℰ$ ≤J
$

1

ℙ ℰ$

Probability that not all processes have succeeded by time 𝑡:

ℙ ℱ% = ℙ Y
$+*

(

ℱ$,% ≤ J
$+*

(

ℙ ℱ$,% < 𝑛 ⋅ 𝑒) /% .(.

Fabian Kuhn – Algorithm Theory 10

𝐴 𝐵

ℙ 𝐴 ∪ 𝐵 = ℙ 𝐴 + ℙ 𝐵 − ℙ 𝐴 ∩ 𝐵
≤ ℙ 𝐴 + ℙ 𝐵

Time Until All Processes Succeed

Claim: With high probability, all processes succeed in the first 𝑂 𝑛 log 𝑛 time slots.

Proof:
• ℙ ℱ% < 𝑛 ⋅ 𝑒)%/.(

• Set 𝑡 = ⌈ 𝑐 + 1 ⋅ 𝑒𝑛 ⋅ ln 𝑛⌉

ℙ ℱ% < 𝑛 ⋅ 𝑒)
34* ⋅.(⋅67 (

.(= 𝑛 ⋅ 𝑒) 34* ⋅67 (= 𝑛 ⋅
1

𝑛34* =
1
𝑛3

Remarks:

• Θ 𝑛 log 𝑛 time slots are necessary for all processes to succeed even with reasonable (constant) probability

• Θ 𝑛 log 𝑛 time slots are also necessary in expectation for all processes to succeed at least once.

Fabian Kuhn – Algorithm Theory 11

Primality Testing

Simple primality test:

1. if 𝑛 is even then
2. return 𝑛 = 2
3. for 𝑖 ≔ 1 to ⁄𝑛 2 do
4. if 2𝑖 + 1 divides 𝑛 then
5. return false
6. return true

• Running time: 𝑂 𝑛

Problem: Given a natural number 𝑛 ≥ 2, is 𝑛 a prime number?

If 𝑛 is not prime, one of the
prime factors 𝑝 is 𝑝 ≤ 𝑛 :

2𝑖 + 1 ≤ 𝑛 ⟹ 𝑖 ≤
𝑛
2

Size of the input 𝑂 log 𝑛 bits:

𝑛 is exponential in the size of
the input.

Fabian Kuhn – Algorithm Theory 12

A Better Algorithm?

• How can we test primality efficiently?
• We need a little bit of basic number theory…

Square Roots of Unity: In ℤ8∗ , where 𝑝 is a prime, the only solutions to the
equation 𝑥: ≡ 1 (mod 𝑝) are 𝑥 ≡ ±1 (mod 𝑝)

• If we find an 𝑥 ≢ ±1 (mod 𝑛) such that 𝑥: ≡ 1 (mod 𝑛), we can conclude that 𝑛 is not a prime.

ℤ8∗ = {1,… , 𝑝 − 1}, multiplication mod 𝑝

𝑥: ≡ 1 mod 𝑝
𝑥: − 1 ≡ 0 mod 𝑝

𝑥 + 1 ⋅ (𝑥 − 1) ≡ 0 mod 𝑝
𝒙 + 𝟏 ⋅ 𝒙 − 𝟏 = 𝒄 ⋅ 𝒑

for an integer 𝑐

𝒑 is a prime factor of 𝒙 + 𝟏 or of 𝒙 − 𝟏:

𝑥 + 1 ≡ 0 mod 𝑝 or
𝑥 − 1 ≡ 0 mod 𝑝

Not true if 𝒑 is not prime:
𝑝 = 15, 𝑥 = 4
𝑥2 = 16 ≡ 1 mod 15

Fabian Kuhn – Algorithm Theory 13

Algorithm Idea

Claim: Let 𝑝 > 2 be a prime such that 𝑝 − 1 = 23𝑑 for an integer 𝑠 ≥ 1 and some odd integer 𝑑 ≥ 1.
Then for all 𝑎 ∈ ℤ4∗ ,

𝒂𝒅 ≡ 𝟏 𝐦𝐨𝐝 𝒑 𝐨𝐫 𝒂𝟐𝒓𝒅 ≡ −𝟏 𝐦𝐨𝐝 𝒑 𝐟𝐨𝐫 𝐬𝐨𝐦𝐞 𝟎 ≤ 𝒓 < 𝒔.

Proof:
• Fermat’s Little Theorem: For every prime 𝑝 and all 𝑎 ∈ ℤ4∗ : 𝑎4'$ ≡ 1 (mod 𝑝)

• Consider 𝑥8, 𝑥$, … , 𝑥3, where 𝑥9 = 𝑎:' for 𝛿9 =
4'$
2'

= 23'9 ⋅ 𝑑

• ∀𝑖 < 𝑠 ∶ 𝑥9 = 𝑥9;$2 , thus 𝑥9 ≡ 1 mod 𝑝 ⟹ 𝑥9;$ ≡ −1, 1 mod 𝑝
• Fermat’s Little Theorem ⟹ 𝑥8 ≡ 1 mod 𝑝

• Thus: ∀𝑖 ≤ 𝑠 ∶ 𝑥9 ≡ 1 mod 𝑝 or ∃𝑖 ≤ 𝑠 ∶ 𝑥9 ≡ −1 mod 𝑝 . (which directly implies the claim.)

Recall that 𝑥2 ≡ 1 mod 𝑝 ⇔ 𝑥 ≡ −1, 1 mod 𝑝

𝛿& =
𝑝 − 1
2𝛿' = 𝑝 − 1 𝛿(=

𝑝 − 1
4

𝛿)*& =
𝑝 − 1
2)*& 𝛿) =

𝑝 − 1
2)⋯

= 2) ⋅ 𝑑 = 2)*& ⋅ 𝑑 = 2)*(⋅ 𝑑 = 2 ⋅ 𝑑 = 𝑑

Fabian Kuhn – Algorithm Theory 14

Primality Test

We have: If 𝑛 is an odd prime and 𝑛 − 1 = 2;𝑑 for an integer 𝑠 ≥ 1 and an odd integer 𝑑 ≥ 1.
Then for all 𝑎 ∈ {1,… , 𝑛 − 1},

𝑎< ≡ 1 mod 𝑛 𝐨𝐫 𝑎:+< ≡ −1 mod 𝑛 for some 0 ≤ 𝑟 < 𝑠.

Idea: If we find an 𝑎 ∈ {1,… , 𝑛 − 1} such that

𝑎< ≢ 1 mod 𝑛 𝐚𝐧𝐝 𝑎:+< ≢ −1 mod 𝑛 for all 0 ≤ 𝑟 < 𝑠,
we can conclude that 𝑛 is not a prime.

• For every odd composite 𝑛 > 2, at least ⁄= > of all 𝑎 ∈ {2,… , 𝑛 − 2} satisfy condition ¬ ∗ .

• How can we find such a witness 𝑎 efficiently?

(∗)

¬(∗)

Idea: pick 𝑎 at random.

Fabian Kuhn – Algorithm Theory 15

Miller-Rabin Primality Test

(∗) holds

Fabian Kuhn – Algorithm Theory 16

• Given a natural number 𝑛 ≥ 2, is 𝑛 a prime number?

Miller-Rabin Test:
1. if 𝑛 is even then return 𝑛 = 2
2. compute 𝑠, 𝑑 such that 𝑛 − 1 = 2;𝑑;
3. choose 𝑎 ∈ {2,… , 𝑛 − 2} uniformly at random;
4. 𝑥 ≔ 𝑎< mod 𝑛;
5. if 𝑥 = 1 or 𝑥 = 𝑛 − 1 then return probably prime;
6. for 𝑟 ≔ 1 to 𝑠 − 1 do
7. 𝑥 ≔ 𝑥: mod 𝑛;
8. if 𝑥 = 𝑛 − 1 then return probably prime;
9. return composite;

Analysis

Theorem:
• If 𝒏 is prime, the Miller-Rabin test always returns probably prime.
• If 𝒏 is composite, the Miller-Rabin test returns composite with probability at least ⁄𝟑 𝟒.

Proof:
• If 𝑛 is prime, the test works for all values of 𝑎
• If 𝑛 is composite, we need to pick a good witness 𝑎

Corollary: If the Miller-Rabin test is repeated 𝑘 times, it fails to detect a composite number 𝑛 with
probability at most 4)1.

2,… , 𝑛 − 2 : all possible 𝑎

good 𝒂 : ⁄𝟑 𝟒 of all possible 𝒂

Fabian Kuhn – Algorithm Theory 17

Running Time

Cost of Modular Arithmetic:
• Representation of a number 𝑥 ∈ ℤ(: 𝑂(log 𝑛) bits

• Cost of adding two numbers 𝑥 + 𝑦 mod 𝑛:

• Cost of multiplying two numbers 𝑥 ⋅ 𝑦 mod 𝑛:
• Done naively, this takes time 𝑂 log2 𝑛
• It’s like multiplying degree 𝑂(log 𝑛) polynomials
à use FFT to compute 𝑧 = 𝑥 ⋅ 𝑦

Time: 𝑂 log 𝑛

Time: 𝑂 log 𝑛 ⋅ log log 𝑛 ⋅ log log log 𝑛

Fabian Kuhn – Algorithm Theory 18

Running Time

Cost of exponentiation 𝒙𝒅𝐦𝐨𝐝 𝒏:
• Can be done using 𝑂(log 𝑑) multiplications

• Base-2 representation of 𝑑: 𝑑 = ∑B+C
⌊6EF, <⌋𝑑B2B

• Fast exponentiation:
1. 𝑦 ≔ 1;
2. for 𝑖 ≔ ⌊log2 𝑑⌋ to 0 do
3. 𝑦 ≔ 𝑦2 mod 𝑛;
4. if 𝑑9 = 1 then 𝑦 ≔ 𝑦 ⋅ 𝑥 mod 𝑛;
5. return 𝑦;

• Example: 𝑑 = 22 = 10110: 𝑥66 = 16 ⋅ 𝑥 6 6 ⋅ 𝑥
6
⋅ 𝑥

6

Fabian Kuhn – Algorithm Theory 19

Running Time

Theorem: One iteration of the Miller-Rabin test can be implemented with running time
𝑂 log: 𝑛 ⋅ log log 𝑛 ⋅ log log log 𝑛 .

1. if 𝑛 is even then return 𝑛 = 2
2. compute 𝑠, 𝑑 such that 𝑛 − 1 = 2;𝑑;
3. choose 𝑎 ∈ {2,… , 𝑛 − 2} uniformly at random;
4. 𝑥 ≔ 𝑎< mod 𝑛;
5. if 𝑥 = 1 or 𝑥 = 𝑛 − 1 then return probably prime;
6. for 𝑟 ≔ 1 to 𝑠 − 1 do
7. 𝑥 ≔ 𝑥: mod 𝑛;
8. if 𝑥 = 𝑛 − 1 then return probably prime;
9. return composite;

Time 𝑂 log 𝑛

𝑂 log 𝑑 = 𝑂 log 𝑛 multiplications

𝑠 = 𝑂 log 𝑛 iterations
1 multiplication per iteration

𝑂 log 𝑛 multiplications ⟹ time 𝑂 log: 𝑛 ⋅ log log 𝑛 ⋅ log log log 𝑛
Fabian Kuhn – Algorithm Theory 20

Deterministic Primality Test

• If a conjecture known as the generalized Riemann hypothesis (GRH) is true, the Miller-Rabin test
can be turned into a polynomial-time, deterministic algorithm

à It is then sufficient to try all 𝑎 ∈ 1,… , 2 ln: 𝑛

• It has long not been proven whether a deterministic, polynomial-time algorithm exists

• In 2002, Agrawal, Kayal, and Saxena gave an �𝑂 log*: 𝑛 -time deterministic algorithm
• Has been improved to s𝑂 log> 𝑛

• In practice, the randomized Miller-Rabin test is still the fastest algorithm

Fabian Kuhn – Algorithm Theory 21

hides factors polynomial in log log 𝑛

Randomized Quicksort

22

𝑨 𝒙

pivot

𝑨ℓ 𝒙 𝑨𝒓

sort 𝑨ℓ and 𝑨𝒓
recursively

partition

Fabian Kuhn – Algorithm Theory

Randomized Quicksort:

pick pivot uniformly at random

Randomized Quicksort Analysis

Randomized Quicksort: pick uniform random element as pivot

Running Time of sorting 𝑛 elements:
• Let us just count the number of comparisons
• In the partitioning step, all 𝑛 − 1 non-pivot elements have to be compared to the pivot

• Number of comparisons:

𝒏 − 𝟏 + #𝐜𝐨𝐦𝐩𝐚𝐫𝐢𝐬𝐨𝐧𝐬 𝐢𝐧 𝐫𝐞𝐜𝐮𝐫𝐬𝐢𝐯𝐞 𝐜𝐚𝐥𝐥𝐬

• If rank of pivot is 𝒓: recursive calls with 𝒓 − 𝟏 and 𝒏 − 𝒓 elements

depends on choice of pivot

𝑟 − 1 𝑛 − 𝑟
1, 2, 3, … , 𝑟 − 1, 𝑟, 𝑟 + 1,… , 𝑛 − 1, 𝑛

Fabian Kuhn – Algorithm Theory 23

Law of Total Expectation

• Given a random variable 𝑋 and
• a set of events 𝐴*, … , 𝐴1 that partition Ω
• E.g., for a second random variable 𝑌, we could have 𝐴9 ≔ 𝜔 ∈ Ω ∶ 𝑌 𝜔 = 𝑖

Law of Total Expectation

𝔼 𝑋 =J
B+*

1

ℙ 𝐴B ⋅ 𝔼 𝑋 𝐴B] =J
&

ℙ 𝑌 = 𝑦 ⋅ 𝔼 𝑋 𝑌 = 𝑦]

Example:
• 𝑋: outcome of rolling a die
• 𝐴C = 𝑋 is even , 𝐴* = 𝑋 is odd

Clearly: 𝔼 𝑋 = $;2;A;B;C;>
>

= 3.5

Ω
1 3 5

2 4 6

A(

A=
= C1 2

𝔼 𝑋 = 𝔼 𝑋 𝐴= ⋅ ℙ 𝐴= + 𝔼 𝑋 𝐴(⋅ ℙ 𝐴(
= 4 = 3 = C1 2

= 3.5
Fabian Kuhn – Algorithm Theory 24

Randomized Quicksort Analysis

Random variables:
• 𝐶: total number of comparisons (for a given array of length 𝑛)
• 𝑅: rank of first pivot
• 𝐶ℓ, 𝐶-: number of comparisons for the 2 recursive calls

𝔼 𝐶 = 𝔼 𝑛 − 1 + 𝐶ℓ + 𝐶- = 𝑛 − 1 + 𝔼 𝐶ℓ + 𝔼[𝐶-]

Law of Total Expectation:

𝔼 𝐶 =J
-+*

(

ℙ 𝑅 = 𝑟 ⋅ 𝔼[𝐶|𝑅 = 𝑟]

= J
-+*

(

ℙ 𝑅 = 𝑟 ⋅ 𝑛 − 1 + 𝔼 𝐶ℓ 𝑅 = 𝑟 + 𝔼[𝐶-|𝑅 = 𝑟]Expected #comparisons
to sort array of length 𝑛

Expected #comparisons to
sort array of length 𝑟 − 1

Expected #comparisons to
sort array of length 𝑛 − 𝑟

Linearity of Expectation:

𝔼 𝑋 + 𝑌 = 𝔼 𝑋 + 𝔼 𝑌

Fabian Kuhn – Algorithm Theory 25

Randomized Quicksort Analysis

We have seen that:

𝔼 𝐶 =J
-+*

(

ℙ 𝑅 = 𝑟 ⋅ 𝑛 − 1 + 𝔼 𝐶ℓ 𝑅 = 𝑟 + 𝔼[𝐶-|𝑅 = 𝑟]

Define: 𝑻(𝒏): expected number of comparisons when sorting 𝑛 elements

𝔼 𝐶 = 𝑇 𝑛
𝔼 𝐶ℓ 𝑅 = 𝑟 = 𝑇 𝑟 − 1
𝔼 𝐶- 𝑅 = 𝑟 = 𝑇(𝑛 − 𝑟)

Recursion:

𝑻 𝒏 =J
𝒓+𝟏

𝒏
𝟏
𝒏 ⋅ 𝒏 − 𝟏 + 𝑻 𝒓 − 𝟏 + 𝑻 𝒏 − 𝒓

𝑻 𝟎 = 𝑻 𝟏 = 𝟎

= C1 𝑛

Fabian Kuhn – Algorithm Theory 26

