universitätfreiburg

Algorithm Theory – WS 2024/25

Chapter 7 : Randomization I Introduction / Primality Test / Randomized Quicksort

Fabian Kuhn Dept. of Computer Science Algorithms and Complexity

Randomization

Randomized Algorithm:

• An algorithm that uses (or can use) random coin flips in order to make decisions

We will see: randomization can be a powerful tool to

- Make algorithms faster
- Make algorithms simpler
- Make the analysis simpler
	- Sometimes it's also the opposite…
- Allow to solve problems (efficiently) that cannot be solved (efficiently) without randomization
	- True in some computational models (e.g., for distributed algorithms)
	- Not clear in the standard sequential model

Contention Resolution

A simple example to start (from distributed computing / networking)

- Allows to introduce important concepts
- ... and to repeat some basic probability theory

Setting:

• n processes, 1 resource

(e.g., communication channel, shared database, …)

- There are time slots 1,2,3, ...
- In each time slot, only one process can access the resource
- All processes need to regularly access the resource
- If process i tries to access the resource in slot t :
	- Successful iff no other process tries to access the resource in slot t

Algorithm

Algorithm Ideas:

- Accessing the resource deterministically seems hard
	- need to make sure that processes access the resource at different times
	- or at least: often only a single process tries to access the resource

• **Randomized solution:**

In each time slot, each process tries with probability p .

Analysis:

- How large should p be?
- How long does it take until some process x succeeds?
- How long does it take until all processes succeed?
- What are the probabilistic guarantees?

Analysis

Events:

• $\mathcal{A}_{x,t}$: process x tries to access the resource in time slot t

• Complementary event: $\overline{\mathcal{A}_{x,t}}$

$$
\mathbb{P}(\mathcal{A}_{x,t}) = p, \qquad \mathbb{P}(\overline{\mathcal{A}_{x,t}}) = 1 - p
$$

• $S_{x,t}$: process x is successful in time slot t

$$
S_{x,t} = A_{x,t} \cap \left(\bigcap_{y \neq x} \overline{A_{y,t}} \right)
$$

\boldsymbol{x} is successful if

- x tries to access resource **and**
- no other process tries to access resource

• **Success probability** (for process x):

$$
\mathbb{P}(\mathcal{S}_{x,t}) = \mathbb{P}(\mathcal{A}_{x,t}) \cdot \prod_{y \neq x} \mathbb{P}(\overline{\mathcal{A}_{y,t}}) = p \cdot (1-p)^{n-1} \qquad \text{choose } p \text{ that}
$$

Fixing

$$
\lim_{h \to \infty} \left(1 + \frac{x}{h}\right)^{h} = e^{x}
$$

• $\mathbb{P}(\mathcal{S}_{x,t}) = p(1-p)^{n-1}$ is maximized for

$$
p = \frac{1}{n} \qquad \Rightarrow \qquad \mathbb{P}(\mathcal{S}_{x,t}) = \frac{1}{n} \left(1 - \frac{1}{n}\right)^{n-1} \qquad \sim \qquad \frac{1}{e \ln \left(\frac{1}{e} - \frac{1}{e}\right)}
$$

• **Asymptotics:**

For
$$
n \ge 2
$$
: $\frac{1}{4} \le \left(1 - \frac{1}{n}\right)^n < \frac{1}{e} < \left(1 - \frac{1}{n}\right)^{n-1} \le \frac{1}{2}$

• **Success probability:**

Random Variable :

- $T_x = t$ if proc. \overline{x} is successful in slot t for the first time
- **Distribution:**

$$
\mathbb{P}(T_x = 1) = q, \ \mathbb{P}(T_x = 2) = (1 - q) \cdot q, ...
$$

$$
\mathbb{P}(\overline{T_x = t}) = (1 - q)^{t-1} \cdot \underline{q}
$$

• T_x is geometrically distributed with parameter

$$
q = \mathbb{P}(\mathcal{S}_{x,t}) = \frac{1}{n} \left(1 - \frac{1}{n}\right)^{n-1} > \frac{1}{en}.
$$

• **Expected time** until first success:

$$
\mathbb{E}[T_x] := \sum_{t=1}^{\infty} t \cdot \mathbb{P}(T_x = t) = \frac{1}{q} < \mathbf{en}
$$

 $\widehat{q} = \mathbb{P}(\mathcal{S}_{x,t}) = p(1-p)^{n-1}$

 9°

Time Until First Success

 $\left(-\frac{1}{e_n}\right)\leq e^{-e_n}$

Failure Event $F_{x,t}$ **:** Process x does not succeed in time slots 1, ..., t t

• The events $\mathcal{S}_{x,t}$ are independent for different t:

$$
\mathbb{P}(\mathcal{F}_{x,t}) = \mathbb{P}\left(\bigcap_{r=1}^{t} \overline{\mathcal{S}_{x,r}}\right) = \prod_{r=1}^{t} \mathbb{P}(\overline{\mathcal{S}_{x,r}}) = \left(1 - \mathbb{P}(\mathcal{S}_{x,1})\right)^{t} = \underbrace{(1-q)^{t}}.
$$

 $\mathcal{F}_{x,t} = \begin{bmatrix} 1 & \delta_{x,r} \end{bmatrix}$

 $r=1$

• We know that $\mathbb{P} \big(\mathcal{S}_{x,r} \big) > 1/_{en}$:

Time Until First Success

Time Until All Processes Succeed

Union Bound: For events
$$
\mathcal{E}_1, \ldots, \mathcal{E}_k
$$
,

$$
\mathbb{P}\left(\bigcup_{x}^{k} \mathcal{E}_{x}\right) \leq \sum_{x}^{k} \mathbb{P}(\mathcal{E}_{x})
$$

Probability that not all processes have succeeded by time t :

$$
\frac{\sqrt{x}}{\sqrt{x}} = \sqrt{\frac{x}{x}}
$$
\nprocesses have succeeded by time t :

\n
$$
\mathbb{P}(F_t) = \mathbb{P}\left(\bigcup_{x=1}^{n} F_{x,t}\right) \le \sum_{x=1}^{n} \mathbb{P}(F_{x,t}) < n \cdot e^{-t/en}
$$

universitätfreiburg

Fabian Kuhn – Algorithm Theory 10 and 10

 $A\begin{pmatrix}Z\Z\end{pmatrix}$ B

 $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$

 $\leq \mathbb{P}(A) + \mathbb{P}(B)$

Time Until All Processes Succeed

Claim: With high probability, all processes succeed in the first $O(n \log n)$ time slots.

Proof:

- $\mathbb{P}(\mathcal{F}_t) < n \cdot e^{-t/en}$
- Set $t = [(c + 1) \cdot en \cdot \ln n]$

$$
\mathbb{P}(\mathcal{F}_t) < n \cdot e^{\frac{-(c+1)\cdot en \cdot \ln n}{en}} = n \cdot e^{-(c+1)\cdot \ln n} = n \cdot \frac{1}{n^{c+1}} = \frac{1}{n^c}
$$

Remarks:

- $\Theta(n \log n)$ time slots are necessary for all processes to succeed even with reasonable (constant) probability
- $\Theta(n \log n)$ time slots are also necessary in expectation for all processes to succeed at least once.

Primality Testing $M = a \cdot b$

$$
1, \ldots, n
$$
 $\underbrace{(1+\alpha n)}_{M} \underbrace{n}{\ell_{n} n}$

Problem: Given a natural number $n \geq 2$, is n a prime number?

Simple primality test:

- 1. **if** is even **then**
- 2. **return** $(n = 2)$
- 3. **for** $i \coloneqq 1$ **to** $\left|\sqrt{n}/2\right|$ **do**
- 4. **if** $2i + 1$ divides *n* then 5. **return false**
- 6. **return true**

• Running time: $O(\sqrt{n})$

If n is not prime, one of the prime factors p is $p \leq |\sqrt{n}|$:

$$
2i + 1 \leq \lfloor \sqrt{n} \rfloor \Rightarrow i \leq \left\lfloor \frac{\sqrt{n}}{2} \right\rfloor
$$

Size of the input $O(\log n)$ bits:

 \sqrt{n} is *exponential* in the size of the input.

A Better Algorithm?

- How can we test primality efficiently?
	- We need a little bit of basic number theory…

$$
\angle \underline{\mathbb{Z}_p^*} = \{ \underline{1}, \dots, p-1 \}, \text{multiplication mod } p
$$

Square Roots of Unity: In \mathbb{Z}_p^* , where p is a prime, the only solutions to the equation $x^2 \equiv 1 \pmod{p}$ are $x \equiv \pm 1 \pmod{p}$ $x^2 \equiv 1 \pmod{p}$ $x^2 - 1 \equiv 0 \pmod{p}$ \longrightarrow $(x+1) \cdot (x-1) = c \cdot p$ $(x + 1) \cdot (x - 1) \equiv 0 \pmod{p}$ for an integer c *p* is a prime factor of $x + 1$ or of $x - 1$: $x + 1 \equiv 0 \pmod{p}$ or $x - 1 \equiv 0 \pmod{p}$ Not true if p is not prime: $p = 15,$ $x = 4$ $x^2 = 16 \equiv 1 \pmod{15}$

• If we find an $x \not\equiv \pm 1 \pmod{n}$ such that $x^2 \equiv 1 \pmod{n}$, we can conclude that n is not a prime.

Algorithm Idea

$$
a^p \equiv a \pmod{p}
$$

Claim: Let $p > 2$ be a prime such that $p - 1 = 2^sd$ for an integer $s \ge 1$ and some odd integer $d \ge 1$. Then for all $\underline{a} \in \mathbb{Z}_p^*$, $a^d \equiv 1 \pmod{p}$ or $a^{2^r d} \equiv -1 \pmod{p}$ for some $0 \le r < s$. Recall that $x^2 \equiv 1 \pmod{p} \Leftrightarrow x \equiv -1, 1 \pmod{p}$ **Proof:** • Fermat's Little Theorem: For every prime p and all $\underline{a} \in \mathbb{Z}_p^*$: $\underline{a}^{p-1} \equiv 1 \pmod{p}$ $2^{s-i}d$ • Consider $x_0, x_1, ..., x_s$, where $x_i = a^{\delta_i}$ for $\delta_i = \frac{p-1}{2^i}$ $= 2^{s-i} \cdot d$ $2^{\dot{l}}$ $\overline{p-1}$ $\overline{p-1}$ $\overline{p-1}$ $\overline{p-1}$ $\delta_0 = p - 1$ $\delta_1 = \frac{p - 1}{2}$ $\delta_2 =$ $\delta_1 =$ $\delta_{s-1} =$ $\frac{1}{2^{s-1}}$ $\delta_s =$... $\delta_{s-1} = \frac{1}{2^{s-1}} \quad \delta_s = \frac{1}{2^s}$ 4 $= 2^s \cdot d$ \cdot $= 2^{s-1} \cdot d$ \cdot $= 2^{s-2} \cdot d$ \cdot $= 2 \cdot d$ \cdot $= 2 \cdot d$ \cdot $= 2 \cdot d$ • $\forall i < s : x_i = x_{i+1}^2$, thus $x_i \equiv 1 \pmod{p} \Rightarrow x_{i+1} \equiv -1, 1 \pmod{p}$ • Fermat's Little Theorem $\Rightarrow x_0 \equiv 1 \pmod{p}$

• Thus: $\forall i \leq s : x_i \equiv 1 \pmod{p}$ or $\exists i \leq s : x_i \equiv -1 \pmod{p}$. (which directly implies the claim.)

X

Primality Test

We have: If n is an odd prime and $n - 1 = 2^sd$ for an integer $s \ge 1$ and an odd integer $d \ge 1$. Then for all $a \in \{1, ..., n-1\}$,

$$
ad \equiv 1 \pmod{n} \text{ or } a^{2^{r}d} \equiv -1 \pmod{n} \text{ for some } 0 \le r < s \tag{*}
$$

Idea: If we find an $a \in \{1, ..., n-1\}$ such that

$$
a^d \not\equiv 1 \pmod{n}
$$
 and $a^{2^r d} \not\equiv -1 \pmod{n}$ for all $0 \le r < s$,

we can conclude that n is not a prime.

- For every odd composite $n > 2$, at least $\frac{3}{4}$ of all $a \in \{2, ..., n-2\}$ satisfy condition $\neg (*)$.
- How can we find such a *witness a* efficiently?

Idea: pick a at random.

Miller-Rabin Primality Test

• Given a natural number $n \geq 2$, is n a prime number?

Miller-Rabin Test:

- 1. **if** *n* is even **then return** $(n = 2)$ \sim dodd
- 2. compute *s*, *d* such that $n 1 = 2^sd$;
- 3. choose $a \in \{2, ..., n-2\}$ uniformly at random;
- 4. $x \coloneqq a^d \bmod n$;
- 5. **if** $x = 1$ or $x = n 1$ then return probably prime;
- 6. **for** $r := 1$ **to** $s 1$ **do**
- 7. $x := x^2 \mod n$;
- 8. **i** if $x = n 1$ then return probably prime;
- 9. **return composite;**

(∗) holds

Analysis

Theorem:

- If **is prime**, the Miller-Rabin test **always** returns **probably prime**.
- If *n* **is composite**, the Miller-Rabin test returns **composite** with **probability at least** $\frac{3}{4}$.

Proof:

- If n is prime, the test works for all values of a
- If n is composite, we need to pick a good witness a

Corollary: If the Miller-Rabin test is repeated k times, it fails to detect a composite number *n* with probability at most 4^{-k} .

Running Time

Cost of Modular Arithmetic:

- Representation of a number $x \in \mathbb{Z}_n$: $O(log n)$ bits
- Cost of adding two numbers $x + y \mod n$:
- Cost of multiplying two numbers $x \cdot y \mod n$:
	- Done naively, this takes time $O(\log^2 n)$
	- It's like multiplying degree $O(\log n)$ polynomials \rightarrow use FFT to compute $z = x \cdot y$

Time: $O(\log n)$

Time: $O(\log n \cdot \log \log n \cdot \log \log \log n)$

Running Time

Cost of exponentiation x^d mod *n*:

- Can be done using $O(\log d)$ multiplications
- Base-2 representation of $d: d = \sum_{i=0}^{\lfloor \log_2 d \rfloor} d_i 2^i$
- **Fast exponentiation:**

1.
$$
y := 1
$$
;
\n2. for i := $\lfloor \log_2 d \rfloor$ to 0 do
\n3. $y := \frac{y^2 \mod n}{n}$;
\n4. if $d_i = 1$ then $y := y \cdot x \mod n$;
\n5. return y ;
\n• Example: $d = 22 = \frac{10110}{2}$ $x^{22} = \left(\left((1^2 \cdot \frac{x}{2})^2\right)^2 \cdot x\right)$

$$
x^{1} = x
$$

\n
$$
x^{10} = (x^{1})^{2}
$$

\n
$$
x^{101} = x^{100} \cdot x = (x^{10})^{2} \cdot x
$$

$$
x^{22} = \left(\left(\left((1^2 \cdot \underline{x})^2 \right)^2 \cdot \underline{x} \right)^2 \cdot \underline{x} \right)^2
$$

Running Time

Theorem: One iteration of the Miller-Rabin test can be implemented with running time $\theta(\log^2 n \cdot \log \log n \cdot \log \log \log n) = \Theta(\log^2 n)$

- 1. **if** *n* is even **then return** $(n = 2)$
- 2. compute s, d such that $n 1 = 2^sd$;
- 3. choose $a \in \{2, ..., n-2\}$ uniformly at random;
- 4. $x \coloneqq a^d \bmod n$;
- 5. **if** $x = 1$ or $x = n 1$ then return probably prime;
- 6. **for** $r \coloneqq 1$ **to** $s 1$ **do**
- 7. $x \coloneqq x^2 \bmod n$:
- 8. **if** $x = n 1$ then return probably prime;
- 9. **return composite;**

 $\Omega(\log n)$ multiplications \Rightarrow time $\Omega(\log^2 n \cdot \log \log n \cdot \log \log \log n)$

Time $O(\log n)$

 $s = O(\log n)$ iterations

1 multiplication per iteration

 $\Omega(\log d) = O(\log n)$ multiplications

Deterministic Primality Test

- If a conjecture known as the generalized Riemann hypothesis (GRH) is true, the Miller-Rabin test can be turned into a polynomial-time, deterministic algorithm
	- \rightarrow It is then sufficient to try all $a \in \{1, ..., 2 \ln^2 n\}$
- It has long not been proven whether a deterministic, polynomial-time algorithm exists

hides factors polynomial in $\log \log n$

- In 2002, Agrawal, Kayal, and Saxena gave an $\widehat{\mathcal{O}}(\log^{12} n)$ -time deterministic algorithm
	- Has been improved to $\tilde{O}(\log^6 n)$
- In practice, the randomized Miller-Rabin test is still the fastest algorithm

Randomized Quicksort

Randomized Quicksort:

pick pivot uniformly at random

Randomized Quicksort Analysis

Randomized Quicksort: pick uniform random element as pivot

Running Time of sorting *n* elements:

- Let us just count the number of comparisons
- In the partitioning step, all $n-1$ non-pivot elements have to be compared to the pivot
- **Number of comparisons:**

depends on choice of pivot

 $n-1$ + #comparisons in recursive calls

• If rank of pivot is r : recursive calls with $r-1$ and $n-r$ elements

$$
\begin{array}{|c|c|c|c|}\n\hline\n r-1 & n-r \\
\hline\n1,2,3,..., & r-1,r,r+1,..., & n-1,n\n\end{array}
$$

Law of Total Expectation

- Given a random variable X and
- a set of events $A_1, ..., A_k$ that partition Ω
	- E.g., for a second random variable \underline{Y} , we could have $A_i := \{ \omega \in \Omega : Y(\omega) = i \}$

Law of Total Expectation

$$
\underbrace{\mathbb{E}[X]}_{i=1} = \sum_{i=1}^{k} \underbrace{\mathbb{P}(A_i) \cdot \mathbb{E}[X \mid A_i]}_{\mathcal{Y}} = \sum_{\mathcal{Y}} \underbrace{\mathbb{P}(Y = \mathcal{Y}) \cdot \mathbb{E}[X \mid Y = \mathcal{Y}]}_{\mathcal{Y}}
$$

Example:

Clearly: $\mathbb{E}[X] = \frac{1+2+3+4+5+6}{6}$ 6 $= 3.5$

• X : outcome of rolling a die

Ω

•
$$
A_0 = \{X \text{ is even}\}, A_1 = \{X \text{ is odd}\}
$$

1 3 5

 A_1

 A_{0}

 $\frac{2}{2}$ 4 6

$$
\mathbb{E}[X] = \underbrace{\mathbb{E}[X|A_0]}_{= 4} \cdot \underbrace{\mathbb{P}(A_0)}_{= 1/2} + \underbrace{\mathbb{E}[X|A_1]}_{= 3} \cdot \underbrace{\mathbb{P}(A_1)}_{= 1/2}
$$
\n
$$
= 3.5
$$

universitätfreiburg

Fabian Kuhn – Algorithm Theory 24

Randomized Quicksort Analysis

Random variables:

- C: total number of comparisons (for a given array of length n)
- R : rank of first pivot
- C_{ℓ} , C_{r} : number of comparisons for the 2 recursive calls

$$
\mathbb{E}[C] = \mathbb{E}[n-1+C_{\ell}+C_{r}] = n-1+\mathbb{E}[C_{\ell}] + \mathbb{E}[C_{r}]
$$

Linearity of Expectation:

$$
\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]
$$

Law of Total Expectation:

universität freiburg

Fabian Kuhn – Algorithm Theory 25

Randomized Quicksort Analysis

We have seen th

nat:
\n
$$
\mathbb{E}[C] = \sum_{r=1}^{n} \frac{\mathbb{P}(R=r) \cdot (n-1 + \mathbb{E}[C_{\ell}|R=r] + \mathbb{E}[C_{r}|R=r])}{\sqrt{\mathbb{E}[C_{\ell}|R=r]}}
$$

Define: $T(n)$: expected number of comparisons when sorting n elements

$$
\mathbb{E}[C_{\ell}|R = T(n)]
$$

\n
$$
\mathbb{E}[C_{\ell}|R = r] = \frac{T(r-1)}{T(n-r)}
$$

\n
$$
\mathbb{E}[\overline{C_r}|\overline{R} = r] = \frac{T(n-r)}{T(n-r)}
$$

Recursion:

$$
T(n) = \sum_{r=1}^{n} \frac{1}{n} \cdot (n-1 + T(r-1) + T(n-r))
$$

$$
T(0) = T(1) = 0
$$