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Randomized Quicksort

pivot

l l partition

T —

‘ I sort Ay and A, ‘ I

\/ recursively \/

Randomized Quicksort:

pick pivot uniformly at random
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Randomized Quicksort Analysis

Randomized Quicksort: pick uniform random element as pivot

Running Time of sorting n elements:
* Let us just count the number of comparisons
* |In the partitioning step, all n — 1 non-pivot elements have to be compared to the pivot

* Number of comparisons: depends on choice of pivot

n — 1 + #comparisons in recursive calls

* If rank of pivot is 7: recursive calls withr — 1 and n — r elements

r—1 || n—r
1,23, ..., r—1,r,r+1,.., n—1n
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Randomized Quicksort Analysis

We have seen that: y =1/ T(T-D T(n-)
Wy S —_ A/
E[C]= ) P(R=7)-(n—1+E[CR =] +E[C,IR =7])

——
————

—_— _ —_———

i

Define: T(n): expected number of comparisons when sorting n elements
E[C] = T(n)

E[C,)R=7] =T —1)
E[C/IR=7r]=T(n —1)

Recursion:
n

T‘(rl)=z;l-(n—1+T(r—1)+T(n—r))
r=1

T(0)=T1)=0
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Randomized Quicksort Analysis e
(=C-

Theorem: The expected number of comparisons when sorting n elements using randomized

quicksort is T(n) < 22 In n.

Proof: (by inductiononn) n .
T(n) = ZE' (n=1+TG-D+T-r), T0)=T() =0

r=1-— : 1 x-Ilnx
=n—1+£-Z(T(i)+T(n—i—1)) : Zé
i=0 . /]
7 n-—1 44
= n— 1 + —- z ’I:@ = 44
induction no= ; A
hypothesis n—1

17 -In(17)
18-In(18)
19-4n(19)

4
Sn—1+—-2i-lni
n - ————
1=1

4 n
<n—1+—-j xInxdx ) 5 = _ i}
n -_1/___ v 4 :
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Randomized Quicksort Analysis

Theorem: The expected number of comparisons when sorting n elements using randomized
quicksortis T(n) < 2nlnn.

Proof:

4 n
T(n)Sn—1+—-f xInx dx
1

n \
x*’Inx «x

| = E
jxnxdx 5 2

2

') < 1+4 n?Inn n2+1
ny=n n |2 272

=/—1+2n1nn—%+4% —

1
=2nlnn + (—— 1)
n

<
<2nlnn ©
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Alternative Randomized Quicksort Analysis

Array tosort:[(7,3,1,10,14,8,12,9,4,6,5,15,2,13,11]

——

Viewing quicksort run as a tree:
E)?;,1,10,14,8,12,9,4,6,5,15,2,13,11]

[3,1,4,6(5)2] [10,14,8(12,9,15,13,11]

3,1,402) (6] (@) 8,9, 11) (14 (15), 13
1] 13(4 (8)9] [11] ) 14 |
[3] [9] [14]
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Comparisons

j is chosen as pivot

Every element can only be the pivot once: |
—> every 2 elements can only be compared once! |

Comparisons are only between pivot and non-pivot elements

-~/

—

W.l.0.g., assume that the elements to sort are 1,2, ...,n
—_——

ppu———

* i.e., iff i is an ancestor of j or j is an ancestor of i

j—i+1 ?Iements

I ]

2 3
-
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P son between i and ) — 2
comparison eweenianl _j—i+1
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Elements i and j are compared if and only if either i or j is a pivot before any element h:i < h <



Counting Comparisons

Random variable for every pair of elements (i,j), i < j:

Y. = 1, if there is a comparison between i and j
=+ |0,  otherwise B
2 2
P(X;; =1) = , Elx..] = ——
Ky=1=7—rir ENl=i
S

Number of comparisons: X

* What is E[X]?
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Randomized Quicksort Analysis

Theorem: The expected number of comparisons when sorting n elements using randomized
quicksortis T(n) < 2nlnn.

Proof:

* Linearity of expectation

For all random variables X, ..., X,; and all a4, ..., a,;, € R,
n

E li a; X;| = Z a; E[X;].

_{:ZXU = E[X] = ZXU] IE[XU]
£ — i<j

i<j

S Y Y

1<j =1 j=i+1
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Randomized Quicksort Analysis

Theorem: The expected number of comparisons when sorting n elements using randomized
quicksortis T(n) < 2nlnn.

Proof:
n-1 n n—-1n-i+1
E[X] = 2 2 z L .
T L Lij-itl T ¢
=1 j=i+1 =1 +£=2
n—1 ®_1
<2- —
Harmonic Series: =i =
k 1 =Hmn) -1
H(k) = Z -
=" =2-n=-1)-(Hn) - 1)
H(k)<1+Ink <2-n—1)-Inn
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Quicksort: High Probability Bound

* We have seen that the number of comparisons of randomized quicksort is O(nlogn) in
expectation.

* Can we also show that the number of comparisons is O(nlogn) with high probability?

* Recall:

On each recursion level, each pivot is compared once with each other element that is still in the
same “part”
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Counting Number of Comparisons

* We looked at 2 ways to count the number of comparisons
* recursive characterization of the expected number
* number of different pairs of values that are compared

Let’s consider yet another way:
* Each comparison is between a pivot and a non-pivot

« How many times is a specific array element x compared as a non-pivot?
=

Element x is compared as a non-pivot to a pivot once in every recursion level until one of the
following two conditions apply:

x is chosen as a pivot or x is alone
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Successful Recursion Level __ X B\

e Consider a specific recursion level £

* Where the first recursion level is level 1 —_— —

/\/)gus dn dewm. x

Define K, as follows:

. IfﬁisTo-ntained in a subarray on recursion level £, then K, is defined as the length of the subarray

containing x on level £.

=

* We therefore have K; = nand K;,1 < Kpforall£ > 1

* If x has been chosen as a pivot before level £, we set K, .= 1
——

#comparisons of x as non-pivot < #levels £ for which K, > 1

Definition: We say that recursion level £ is successful for element x iff the following is true:

S — —_—

2
Kevi =1 or Kppy =5-Kp
—_— =3
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Successful Recursion Level

Lemma: For every recursion level £ and every array element x, it holds that level £ is successful for
x with probability at least 1/5, independently of what happens in other recursion levels.

Proof:

* Assume that K, > 1, otherwise level ¥ is trivially successful
/
[ — L/M

= ] " =" > "/

4 p—

* |f pivot is in the middle part, both remaining parts have size
K
< K, — { {)/3‘ —1= 2/3 - K.

* |n this case, level ¢ is successful

* The probability that the pivot in in the middle partis > 1/5.
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Number of Successful Recursion Levels

Lemma: If among the first £ recursion levels, at least logs,,(n) are successful for element x, we

have K, 4 = 1.

Proof:

 We know that
K, = n, Vi=1:K;;1 <K;

* If level i is successful, then K;.; < ?/5;-K;orK;., =

 If s among the first € levels are successful, then

Kpy1 < max {ln : (2/3)5}

—_—

* If s = logs,,(n), then Ky < 1.
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Chernoff Bounds

* Let X4, ..., X;, be independent 0-1 random variables and define p; := P(X; = 1).

* Consider the random variable X = };I* | X;
* We have p = E[X] = };_; E[X;] = Z?zlﬁ

If p; = p forall i:
X ~ Bin(n, p)

Chernoff Bound (Lower Tail):

Ve >0: P(X < (1-8)u) <e ¥w?

Chernoff Bound (Upper Tail):

S u
e
vé>0: P(X>(1 +?§)u) < ((1 n 6)1+5> < e~ 5°1/3

!

holds for 6 < 1
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Chernoff Bounds, Example 1 n
pi=p=5  w=EX]=np=7

Assume that a fair coin is flipped n times. What is the probability to have

1. lessthann/3 heads?

— n 1\ n _11lmn 52
P(X<—):P(X<(1——)._)<e 2322 — p—N/36 [P’(X<(1—5)u)<e—7“
3 3) 2 ,

2. more than 0.51n tails?

n ~0.022
IP(X<(1+(_)£_2)-§)<8 3

3. lessthan™/, — @) nlnn tails?

2vVc-nlnn\ n Acnalnnrxw 1
PlX<|1-— —N<e 2iZ Z=eClnn_
- N 2 n¢

=
. . ors . n
With high probability, #heads/tails = 5 + 0(,/nlog n)

N

52
~ 8—0.000066711 [P’(X > (1 4+ 5)M) < e_T“

_—

universitatfreiburg Fabian Kuhn — Algorithm Theory



\(

a"z $ ék(&.
Number of Comparisons for x %
A% 0“ Suc¢
9‘\(;

Lemma: For every array eIement x, with high probability, as a non-pivot, x is compared to a pivot at
most O(logn) times.

_ Le -\'L-k Qw‘ﬂ\’:\‘i"zg
Proof: NS

* Consider some level i > 1, and let_if level i not successful

e

q; = P(level i successful for x | history up to level i)

* Previous lemma = q; = 1/;

(9\»,_&1 wol suce — Xizo

* Define random variable Yoo o —> (ovel 7 succ.
-
O if level i not successful for x

i l with probablllty 1/,3 if level is&gessfuﬁor‘xﬂ
9] OMMK -;
 Then, P(X; = 1) = /5 and X; are independent for different i
— 3 (/3
R(Y ~0) "/?(\ S“C.C‘\ =q.‘ -E: .—‘/3
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Number of Comparisons for x

Lemma: For every array element x, with high probability, as a non-pivot, x is compared to a pivot at

most O(logn) times.

Proof:
* X; independent, P(X; = 1) = 1/3,X = 1 = level i successful

* Consider the first t levels and define X := Z X;

« E[X] =15t g i
* X < successful levels for x among first ¢ levels

* Hence, if X = logs,,(n), then Ky =1

* We thus need that for any const. ¢ > 0 and some t = O(logn),

T b (x < 1og3/2(n)) <~

———
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Number of Comparisons for x

Lemma: For every array element x, with high probability, as a non-pivot, x is compared to a pivot at
most O(logn) times.

Proof:
e u:=E[X]=1/5-t, forc > 0andsomet = 0(ogn), we need
P (X < logs (n)) < 1 'g <
/2 — n¢ ¢ < W

52
Chernoff: PX <(1—-8)u) <e 2" = P(X <n'u/2) S

We need u > 2 -logs, (n) such that ¥/, > logs, (n) f (r)( X < (053,2”7 < W

) g3/2 t’/ (‘52“
* We need u = 8c - Inn such that e H/8 < n¢
— =
* We can therefore chooset = 3 - u = O(logn). €= C- fhgv\

—_—
e
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Number of Comparisons

Theorem: With high probability, the total number of comparisons is at most O(nlogn).

D)

Proof:

* For every const. ¢ > 0, there exists const. a > 0, s.t. for every element x, the number of
comparisons for elementi as a non-pivot is < a In n with probability at least 1 — 1/ c.

* Define event &, := {#comparisons for x as non-pivot > a Inn}
« P(E,) <n”¢

* Union bound over all events &,.:

n n 1 1
IP’( 8x)S2P(8x)Sn-nc=nc_1
x=1

x=1

-
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Relation to Random Binary Search Trees

Consider Recursion Tree: Label each subarray of size > 1 by the pivot and each subarray of size = 1 by the

elementinit.
%10,14,8,12,9,4,6,5,15,2,13,11]
13,1,4,6(5)2] [10,14,8,12)9,15,13,11]

* We get a binary search tree (BST) on the n elements
e Corresponds to the BST with a random insertion order

Y

* #comparisons of element x as non-pivot = depth of x in tree

* Our analysis shows that the height of a random BST is O(logn), w.h.p.
\

e #comp. of rand. quicksort = n - average depth in a random BST

universitatfreiburg Fabian Kuhn — Algorithm Theory
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Types of Randomized Algorithms

Las Vegas Algorithm:
* always a correct solution

* running time is a random variable
e /dl

* Example: randomized quicksort, contention resolution

—

Monte Carlo Algorithm:

* probabilistic correctness guarantee (mostly correct)
—~—— N N

* fixed (deterministic) running time

——

 Example: primality test
-
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Minimum Cut

Reminder: Given a graph G = (V, E), a cut is a partition (4,B) of V
suchthatV =AUB,ANB=0,AB+#0

Size of the cut (A4, B): # of edges crossing the cut

* For weighted graphs, total edge weight crossing the cut

Goal: Find a cut of minimal size (i.e., of size A(G))

Maximum-flow based algorithm:

* Fix s, compute min s-t-cutforallt # s

. O(m : /1(6)) = 0(mn) per s-t cut

» Gives an 0(mnA(G)) = 0(mn?)-algorithm

O(w)

—_—
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Edge Contractions

* |In the following, we consider multi-graphs that can have multiple edges (but no self-loops)

~ ok 1) not ok

Contracting edge {u, v}:

* Replace nodes u, v by new node w

* For all edges {u, x} and {v, x}, add an edge {w, x}
 Remove self-loops created at node w

contract {u, v}
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Properties of Edge Contractions

Nodes:
* After contracting {u, v}, the new node represents u and v
* After a series of contractions, each node represents a subset of the original nodes

1 (1,2) (1,2)
3 (5.(4,6)) 4 | 3,456)
4 (3,4,5,6)
Cuts: 6

* Assume in the contracted graph, w represents nodes S,, C V

—_—

* The edges of a node w in a contracted graph are in a one-to-one correspondence with the edges
crossing the cut (S,,,V \ S,,) B
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Randomized Contraction Algorithm

Algorithm:

while there are > 2 nodes do
contract a uniformly random edge
return cut induced by the last two remaining nodes
(cut defined by the original node sets represented by the last 2 nodes)
—
| Theorem: The random contraction algorithm returns a minimum cut with probability

at least 1/0(n?).

e We will show this next.

=

Theorem: The random contraction algorithm can be implemented in time 0 (n?).
* There are n — 2 contractions, each can be done in time O(n).
* We will see this later.
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Contractions and Cuts

Lemma: If two original nodes u, v € IV are merged into the same node of the contracted graph,
there is a path connecting u and v in the original graph s.t. all edges on the path are contracted.

Proof:

* Any edge {x, vy} in the contracted graph corresponds to some edge in the original graph between
two nodes u’ and v' in the sets S, and S,, represented by x and .

* Contracting {x, y} merges the node sets S and S,, represented by x and y and does not change
any of the other node sets.

* The claim then follows by induction on the number of edge contractions.

Sx
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Contractions and Cuts W
&) G

Lemma: During the contraction algorithm, the edge connectivity (i.e., the size of the min. cut)
cannot get smaller. o '

Proof:
» All cuts in a (partially) contracted graph correspond to cuts of the same size in the original graph G
as follows:

* For a node u of the contracted graph, let S, be the set of original nodes that have been merged into u
(the nodes that u represents)

* Consider a cut (4, B) of the contracted graph

« (A’,B") with
A :=USu, B’ :=USU

UEA VEB
is a cut of G.

* The edges crossing cut (A4, B) are in one-to-one correspondence with the edges crossing cut (4', B").

————

universitatfreiburg



Contraction and Cuts

Lemma: The contraction algorithm outputs a cut (4, B) of the input graph G if and only if it never
contracts an edge crossing (4, B).

Proof:

1. If an edge crossing (A, B) is contracted, a pair of nodes u € A, v € B is merged into the same
node and the algorithm outputs a cut different from (A4, B).

2. If noedge of (4, B) is contracted, no two nodes u € A, v € B end up in the same contracted
node because every path connecting u and v in G contains some edge crossing (4, B)

In the end there are only 2 sets = outputis (4, B)
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Getting The Min Cut @?@

Theorem: The probability that the algorithm outputs a specific minimum cut is at least

2/a(n - 1)=1/(5).

To prove the theorem, we need the following claim:

Claim: If the minimum cut size of a multigraph G (no self-loops) is k, G has at least kn/2 edges.

>k

Proof:

* Min cut has size k = all nodes have degree > k
= —
* Anode v of degree < k gives a cut ({v},V \ {v}) of size < k

* Number of edgesm =1/, - Y, deg(v) = 1/, - nk
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Getting The Min Cut

Theorem: The probability that the algorithm outputs a specific minimum cut is at least 2/n(n — 1).

k edges

* Consider a fixed min cut (4, B), assume (4, B) has size k

* The algorithm outputs (4, B) iff none of the k edges crossing (4, B) gets contracted.
e Before contraction i, therearen + 1 — i nodes
2> andthus> (n+1—i)k/2 edges

* |f no edge crossTng (4, B) is contracted before, the probability to contract an edge crossing (4, B)
in step i is at most

k2
nm+1—-Dk n+1-i
2 = —

———

——
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Getting The Min Cut

Theorem: The probability that the algorithm outputs a specific minimum cut is at least 2/n(n — 1).
Proof:

* If no edge crossing (A4, B) is contracted before, the probability to contract an edge crossing (4, B)
in step i isatmost 2/, ,_;.

* Event &;: edge contracted in step i is not crossing (A4, B)
* Goal: show that P(&; N N &, _5) = 2/n(n — 1)

IP(aIg. returns (A,B))
=PE, NEN-NE, )
=P(&) - P(& &) P& |ENE) P&z | EsNE N NE,_3)

2 n—1i—1
> — —
= n+l1—-i1i n—i+1
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Getting The Min Cut

Theorem: The probability that the algorithm outputs a minimum cut is at least 2/n(n — 1).
Proof:

e P(§ | ENNE D=1 ——— =100

n—i+1 o n—i+1

* No edge crossing (4, B) contracted: event £ = NI/ &;

P(E)=PE N--NELH)
=P(&) - P& &) P&z | E1 NN E_3)
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Randomized Min Cut Algorithm

Theorem: If the contraction algorithm is repeated O (n? log n) times, one of the 0(n? logn)
instances returns a min. cut w.h.p.

Proof:
n

2) - Inn iterations:

* Probability to not get a minimum cut in c - (

1 c-(g)-lnn 1

11— == < e—clnn —

( (")) \ "
2

—— VxER: (1+x) <e*

Corollary: The contraction algorithm allows to compute a minimum cut i
* It remains to show that each instance can be implemented in 0(n?) ti
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