universitätfreiburg

Algorithm Theory – WS 2024/25

Chapter 7 : Randomization II Randomized Quicksort / Randomized Min Cut Algorithm

Fabian Kuhn Dept. of Computer Science Algorithms and Complexity

Randomized Quicksort

Randomized Quicksort:

pick pivot uniformly at random

Randomized Quicksort: pick uniform random element as pivot

Running Time of sorting *n* elements:

- Let us just count the number of comparisons
- In the partitioning step, all $n-1$ non-pivot elements have to be compared to the pivot
- **Number of comparisons:**

depends on choice of pivot

 $n-1$ + #comparisons in recursive calls

• **If rank of pivot is** r **:** recursive calls with $r-1$ and $n-r$ elements

$$
\begin{array}{|c|c|c|}\n\hline\n r-1 & n-r \\
1,2,3,..., & r-1,r,r+1,..., & n-1,n\n\end{array}
$$

Define: $T(n)$: expected number of comparisons when sorting n elements

$$
\mathbb{E}[C] = T(n)
$$

\n
$$
\mathbb{E}[C_{\ell}|R = r] = T(r - 1)
$$

\n
$$
\mathbb{E}[C_{r}|R = r] = T(n - r)
$$

Recursion:

$$
\frac{T(n)}{T(0)} = \sum_{r=1}^{n} \frac{1}{n} \cdot (n-1+T(r-1)+T(n-r))
$$

$$
T(0) = T(1) = 0
$$

Theorem: The expected number of comparisons when sorting *n* elements using randomized quicksort is $T(n) \leq (2n \ln n)$. **Proof:** (by induction on *n*) n 1 $T(n) = \sum_{n=1}^{\infty}$ $\frac{1}{n} \cdot (n-1 + T(r-1) + T(n-r)),$ $T(0) = T(1) = 0$ $x \cdot \ln x$ $\overline{r=1}$ $n-1$ 1 $= n - 1 +$ $\frac{1}{n} \cdot \sum_{i=1}^{n}$ $T(i) + T(n - i - 1)$ $\overline{i=0}$ $n-1$ 2 $= n - 1 +$ $\frac{1}{n} \cdot \sum_{i=1}^{n}$ $T(i)$ induction $\overline{i=1}$ 17 ⋅ ln(17
18 · ln(18
19 + ln(19 hypothesis $n-1$ 4 $\leq n-1 +$ $\frac{1}{n} \cdot \sum_{i=1}^{n}$ $i \cdot \ln i$ $i = 1$ \overline{n} ⋯ 4 $\leq n - 1 +$ $\frac{1}{n} \cdot \int_{1}$ $x \ln x dx$ 10 15

 $1 - 7 - 1$

universität freiburg

Fabian Kuhn – Algorithm Theory 5

Theorem: The expected number of comparisons when sorting *n* elements using randomized quicksort is $T(n) \leq 2n \ln n$.

Proof:

$$
T(n) \le n - 1 + \frac{4}{n} \cdot \int_{1}^{n} x \ln x \, dx
$$

\n
$$
T(n) \le n - 1 + \frac{4}{n} \cdot \left[\frac{n^2 \ln n}{2} - \frac{n^2}{4} + \frac{1}{4} \right]
$$

\n
$$
= \mu - 1 + 2n \ln n - \mu + \frac{4}{6} \frac{1}{n}
$$

\n
$$
= 2n \ln n + \left(\frac{1}{n} - 1 \right)
$$

\n
$$
\le \ln n
$$

\n
$$
\le \infty
$$

Alternative Randomized Quicksort Analysis

Array to sort: [7 , 3 , 1 , 10 , 14 , 8 , 12 , 9 , 4 , 6 , 5 , 15 , 2 , 13 , 11]

Viewing quicksort run as a tree: [7 , 3 , 1 , 10 , 14 , 8 , 12 , 9 , 4 , 6 , 5 , 15 , 2 , 13 , 11] $\left[(3, 1, 4, 6(5) 2] \right)$ $\left[(10, 14, 8(12), 9, 15, 13, 11] \right]$ $\begin{bmatrix} 3 & 1 & 4 \end{bmatrix}$ $\begin{bmatrix} 2 & 1 \end{bmatrix}$ $\begin{bmatrix} 6 & 1 \end{bmatrix}$ $\begin{bmatrix} 10 & 8 & 9 & 11 \end{bmatrix}$ $\begin{bmatrix} 11 & 14 & 15 & 13 \end{bmatrix}$ $\begin{bmatrix} 4 \end{bmatrix}$ $\begin{bmatrix} 8 \end{bmatrix} 9 \end{bmatrix}$ $\begin{bmatrix} 11 \end{bmatrix}$ $\begin{bmatrix} 13 \end{bmatrix} 14 \end{bmatrix}$ $\begin{bmatrix} 3 \end{bmatrix}$ $\begin{bmatrix} 9 \end{bmatrix}$ [14]

universitätfreiburg

Fabian Kuhn – Algorithm Theory 7

Comparisons

- Comparisons are only between pivot and non-pivot elements
- Every element can only be the pivot once:
	- \rightarrow every 2 elements can only be compared once!
- W.l.o.g., assume that the elements to sort are $1,2,...,n$
- Elements i and j are compared if and only if either i or j is a pivot before any element $h: i < h <$ i is chosen as pivot 23

universitätfreiburg

Fabian Kuhn – Algorithm Theory 8

 $\ddot{\epsilon}$

 \bm{x}

Counting Comparisons

Random variable for every pair of elements (i, j) , $i < j$:

 $X_{ij} = \begin{cases} 1, & \text{if there is a comparison between } i \text{ and } j \\ 0, & \text{otherwise.} \end{cases}$ 0, otherwise $\mathbb{P}\big(X_{ij} = 1\big) =$ 2 $\frac{-}{j-i+1}$, $\mathbb{E}[X_{ij}] =$ 2 $j - i + 1$

Number of comparisons: \boldsymbol{X}

$$
X = \sum_{i < j} X_{ij}
$$

• What is $E[X]$?

Theorem: The expected number of comparisons when sorting *n* elements using randomized quicksort is $T(n) \leq 2n \ln n$.

Proof:

• **Linearity of expectation:**

For all random variables $X_1, ..., X_n$ and all $a_1, ..., a_n \in \mathbb{R}$,

$$
\mathbb{E}\left[\sum_{i}^{n} a_{i} X_{i}\right] = \sum_{i}^{n} a_{i} \mathbb{E}[X_{i}].
$$

$$
\underline{X} = \sum_{i < j} X_{ij} \implies \underline{\mathbb{E}[X]} = \mathbb{E}\left[\sum_{i < j} X_{ij}\right] = \sum_{i < j} \underline{\mathbb{E}[X_{ij}]} = \sum_{i < j} \underline{\mathbb{E}[X_{ij}]} = \sum_{i < j} \frac{2}{j - i + 1} = \sum_{i = 1}^{n-1} \sum_{j = i + 1}^{n} \frac{2}{j - i + 1}
$$

Theorem: The expected number of comparisons when sorting n elements using randomized quicksort is $T(n) \leq 2n \ln n$.

Proof:

Harmonic Series:

$$
\underline{H(k)} := \sum_{i=1}^{k} \frac{1}{i}
$$

$$
H(k) \leq \underline{1 + \ln k}
$$

Quicksort: High Probability Bound

- We have seen that the number of comparisons of randomized quicksort is $O(n \log n)$ in expectation.
- Can we also show that the number of comparisons is $O(n \log n)$ with high probability?
- **Recall:**

On each recursion level, each pivot is compared once with each other element that is still in the same "part"

Counting Number of Comparisons

- We looked at 2 ways to count the number of comparisons
	- recursive characterization of the expected number
	- number of different pairs of values that are compared

Let's consider yet another way:

- Each comparison is between a pivot and a non-pivot
- How many times is a specific array element x compared as a non-pivot?

Element x is compared as a non-pivot to a pivot once in every recursion level until one of the following two conditions apply:

x is chosen as a pivot or x is alone

Successful Recursion Level

- Consider a specific recursion level ℓ
	- Where the first recursion level is level 1

Define K_{ℓ} as follows: \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow

- If x is contained in a subarray on recursion level ℓ , then K_{ℓ} is defined as the length of the subarray containing x on level ℓ .
	- We therefore have $K_1 = n$ and $K_{\ell+1} \leq K_{\ell}$ for all $\ell \geq 1$
- If x has been chosen as a pivot before level ℓ , we set $K_{\ell} \coloneqq 1$

#comparisons of x as non-pivot \leq #levels ℓ for which $K_{\ell} > 1$

Definition: We say that recursion level ℓ is successful for element x iff the following is true:

$$
K_{\ell+1} = 1 \quad \text{or} \quad K_{\ell+1} \leq \frac{2}{3} \cdot K_{\ell}
$$

universität freiburg

Fabian Kuhn – Algorithm Theory 14

Successful Recursion Level

Lemma: For every recursion level ℓ and every array element x , it holds that level ℓ is successful for x with probability at least $\frac{1}{3}$, independently of what happens in other recursion levels.

Proof:

• Assume that $K_{\ell} > 1$, otherwise level ℓ is trivially successful

$$
\geq \left| \frac{K_{\ell}}{3} \right| \qquad \qquad = \left| \frac{K_{\ell}}{3} \right| \qquad \qquad \geq \left| \frac{K_{\ell}}{3} \right|
$$

• If pivot is in the middle part, both remaining parts have size

$$
\leq K_{\ell} - \underbrace{\left| \binom{K_{\ell}}{3} \right|}_{\text{max}} - 1 \leq \frac{2}{3} \cdot K_{\ell}.
$$

- In this case, level ℓ is successful
- The probability that the pivot in in the middle part is $\geq \frac{1}{3}$.

Number of Successful Recursion Levels

Lemma: If among the first ℓ recursion levels, at least $\log_{\frac{3}{2}}(n)$ are successful for element x , we have $K_{\ell+1} = 1$.

Proof:

• We know that

$$
K_1 = n, \qquad \forall i \ge 1 : K_{i+1} \le K_i
$$

- If level *i* is successful, then $K_{i+1} \leq \frac{2}{3} \cdot K_i$ or $K_{i+1} = 1$
- If s among the first ℓ levels are successful, then

$$
\underline{K_{\ell+1}} \le \max\left\{1, n \cdot \left(\frac{2}{3}\right)^s\right\}
$$

• If $s \geq \log_{\frac{3}{2}}(n)$, then $K_{\ell+1} \leq 1$.

Chernoff Bounds

- Let $X_1, ..., X_n$ be independent 0-1 random variables and define $p_i := \mathbb{P}(X_i = 1)$.
- Consider the random variable $X = \sum_{i=1}^n X_i$
- We have $\mu \coloneqq \mathbb{E}[X] = \sum_{i=1}^n \mathbb{E}[X_i] = \sum_{i=1}^n p_i$

Chernoff Bound (Lower Tail):

$$
\forall \delta > 0 \colon \ \mathbb{P}(X < (1-\delta)\mu) < \underline{e^{-\delta^2 \mu}}^2
$$

Chernoff Bound (Upper Tail):

$$
\forall \delta > 0: \ \mathbb{P}(X > \underbrace{(1+\delta)\mu}) < \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu} < \underbrace{e^{-\delta^2\mu/3}}_{\text{holds for }\delta \leq 1}
$$

If $p_i = p$ for all *i*:

 $\underline{X} \sim \text{Bin}(n, p)$

Chernoff Bounds, Example

$$
p_i = p = \frac{1}{2},
$$
 $\mu := \mathbb{E}[X] = np = \frac{n}{2}$

Assume that a fair coin is flipped n times. What is the probability to have

1. less than $n/3$ heads?

$$
\mathbb{P}\left(X < \frac{n}{3}\right) = \mathbb{P}\left(X < \left(1 - \frac{1}{3}\right) \cdot \frac{n}{2}\right) < e^{-\frac{1}{2} \cdot \frac{1}{3^2} \cdot \frac{n}{2}} = e^{-n/36} \quad \mathbb{P}(X < (1 - \delta)\mu) < e^{-\frac{\delta^2}{2}\mu}
$$

2. more than $0.51n$ tails?

$$
\mathbb{P}\left(X < (1+0.02) \cdot \frac{n}{2}\right) < e^{-\frac{0.02^2 n}{3} \cdot \frac{n}{2}} \approx e^{-0.0000667 n} \qquad \boxed{\mathbb{P}(X > (1+\delta)\mu) < e^{-\frac{\delta^2}{3}\mu}}
$$

3. less than
$$
\frac{n}{2} - \sqrt{c} \cdot \frac{n \ln n}{2}
$$
 tails?
\n
$$
\mathbb{P}\left(X < \left(1 - \frac{2\sqrt{c} \cdot n \ln n}{n}\right) \cdot \frac{n}{2}\right) < e^{-\frac{A c \cdot n \ln n \cdot \pi}{2n^2 \cdot \sqrt{c}}} = e^{-c \cdot \ln n} = \frac{1}{n^c}
$$
\nWith high probability, theads/tails = $\frac{n}{2} \pm O\left(\sqrt{n \log n}\right)$

Number of Comparisons for

Lemma: For every array element x , with high probability, as a non-pivot, x is compared to a pivot at most $O(\log n)$ times.

Proof:

• Consider some level $i \geq 1$, and let uniful level i not successful

 $q_i \coloneqq \mathbb{P}(\text{level } i \text{ successful for } x \mid \text{history up to level } i)$

• Previous lemma
$$
\Rightarrow q_i \geq \frac{1}{3}
$$

• Define random variable

level i not succ $\rightarrow X = 0$

$$
\chi_{\sim} \qquad \Longrightarrow \text{ level } \hat{r} \text{ sac.}
$$

$$
X_i := \begin{cases} \n\underline{0} & \text{if level } i \text{ not successful for } x \\ \n\underline{1} & \text{with probability } \frac{1/3}{q_i} \text{ if level } i \text{ successful for } x \\ \n\underline{0} & \text{where} \n\end{cases}
$$

• Then, $\mathbb{P}(X_i = 1) = \frac{1}{3}$ and X_i are independent for different i

$$
\sqrt[n]{|X_{\tau^{-}0}|} = \sqrt[n]{(\tau \text{succ})} \cdot \frac{1/3}{4!} = 9 \cdot \frac{1/3}{4!} = 1/3
$$

universitätfreiburg

Fabian Kuhn – Algorithm Theory 19

Number of Comparisons for

Lemma: For every array element x , with high probability, as a non-pivot, x is compared to a pivot at most $O(\log n)$ times.

Proof:

- X_i independent, $\mathbb{P}(X_i = 1) = \frac{1}{3}, X_i = 1 \implies$ level *i* successful t
- Consider the first t levels and define $X \coloneqq \sum$
	- $\mathbb{E}[X] = \frac{1}{3} \cdot t$
	- $X \le$ successful levels for x among first t levels
- Hence, if $X \geq \log_{\frac{3}{2}}(n)$, then $K_{t+1} = 1$
- We thus need that for any const. $c > 0$ and some $t = O(\log n)$,

$$
\mathbb{P}\left(X < \log_{3/2}(n)\right) \le \frac{1}{n^c}
$$

 \dot{l}

 X_i

Number of Comparisons for

Lemma: For every array element x , with high probability, as a non-pivot, x is compared to a pivot at most $O(\log n)$ times.

Proof:

• $\mu \coloneqq \mathbb{E}[X] = \frac{1}{3} \cdot t$, for $c > 0$ and some $t = O(\log n)$, we need 1 $e^{-\frac{L}{d}} < u$ $\mathbb{P}\left(X < \log_{3/2}\right)$ (n)) \leq $n^{\mathcal{C}}$ • **Chernoff:** $\mathbb{P}(X \leq (1-\delta)\mu) \leq e^{-\frac{\delta^2}{2}\mu} \implies \mathbb{P}(X \leq \frac{\mu}{\pi/2}) \leq (e^{-\frac{\mu}{8}})$ $\overline{8}$ $f(x \leq (6, 3, n) < n^{c})$ • We need $\mu \geq 2 \cdot \log_{\frac{3}{2}}(n)$ such that $\frac{\mu}{2} \geq \log_{\frac{3}{2}}(n)$ $25 \log_{3} 4$ • We need $\mu \geq 8c \cdot \ln n$ such that $e^{-\mu/8} \leq n^{-c}$ $t = c \cdot \log n$ • We can therefore choose $t = 3 \cdot \mu = O(\log n)$.

Number of Comparisons

Theorem: With high probability, the total number of comparisons is at most $O(n \log n)$.

Proof:

- For every const. $c > 0$, there exists const. $a > 0$, s.t. for every element x, the number of comparisons for element x as a non-pivot is $\leq \alpha \ln n$ with probability at least $1 - \frac{1}{n^c}$.
- Define event $\mathcal{E}_x \coloneqq \{\text{#comparisons for } x \text{ as non-pivot } > \alpha \ln n\}$ • $\mathbb{P}(\mathcal{E}_x) \leq n^{-c}$
- Union bound over all events \mathcal{E}_x :

$$
\mathbb{P}\left(\bigcup_{x=1}^{n} \mathcal{E}_{x}\right) \leq \sum_{x=1}^{n} \mathbb{P}(\mathcal{E}_{x}) \leq n \cdot \frac{1}{n^{c}} = \frac{1}{n^{c-1}}
$$

Relation to Random Binary Search Trees

Consider Recursion Tree: Label each subarray of size > 1 by the pivot and each subarray of size $= 1$ by the element in it.

- We get a binary search tree (BST) on the n elements
	- Corresponds to the BST with a random insertion order
- #comparisons of element x as non-pivot = depth of x in tree
	- Our analysis shows that the height of a random BST is $O(\log n)$, w.h.p.
- #comp. of rand. quicksort $= n \cdot$ average depth in a random BST

Types of Randomized Algorithms

Las Vegas Algorithm:

- always a correct solution
- running time is a random variable
- **Example:** randomized quicksort, contention resolution

Monte Carlo Algorithm:

- probabilistic correctness guarantee (**m**ostly **c**orrect)
- fixed (deterministic) running time
- **Example:** primality test

Minimum Cut

Reminder: Given a graph $G = (V, E)$, a cut is a partition (A, B) of V such that $V = A \cup B$, $A \cap B = \emptyset$, $A, B \neq \emptyset$

Size of the cut (A, B) : # of edges crossing the cut

• For weighted graphs, total edge weight crossing the cut

Goal: Find a cut of minimal size (i.e., of size $\lambda(G)$)

Maximum-flow based algorithm:

- Fix s, compute min s-t-cut for all $t \neq s$
- $O(m \cdot \lambda(G)) = O(mn)$ per s-t cut
- Gives an $O(mn\lambda(G)) = O(mn^2)$ -algorithm

Edge Contractions

• In the following, we consider multi-graphs that can have multiple edges (but no self-loops)

Contracting edge $\{u, v\}$ **:**

- Replace nodes u, v by new node w
- For all edges $\{u, x\}$ and $\{v, x\}$, add an edge $\{w, x\}$
- Remove self-loops created at node w

Properties of Edge Contractions

Nodes:

Cuts:

- After contracting $\{u, v\}$, the new node represents u and v
- After a series of contractions, each node represents a subset of the original nodes

- Assume in the contracted graph, w represents nodes $S_w \subset V$
- The edges of a node w in a contracted graph are in a one-to-one correspondence with the edges crossing the cut $(S_w, V \setminus S_w)$

Randomized Contraction Algorithm

Algorithm:

 while there are > 2 nodes **do**

contract a uniformly random edge

return cut induced by the last two remaining nodes

(cut defined by the original node sets represented by the last 2 nodes)

Theorem: The random contraction algorithm returns a minimum cut with probability at least $1/O(n^2)$.

• We will show this next.

Theorem: The random contraction algorithm can be implemented in time $O(n^2)$.

- There are $n-2$ contractions, each can be done in time $O(n)$.
- We will see this later.

Contractions and Cuts

Lemma: If two original nodes $u, v \in V$ are merged into the same node of the contracted graph, there is a path connecting u and v in the original graph s.t. all edges on the path are contracted.

Proof:

- Any edge $\{x, y\}$ in the contracted graph corresponds to some edge in the original graph between two nodes u' and v' in the sets S_x and S_y represented by x and y.
- Contracting $\{x, y\}$ merges the node sets S_x and S_y represented by x and y and does not change any of the other node sets.
- The claim then follows by induction on the number of edge contractions.

Contractions and Cuts

Lemma: During the contraction algorithm, the edge connectivity (i.e., the size of the min. cut) cannot get smaller.

Proof:

- All cuts in a (partially) contracted graph correspond to cuts of the same size in the original graph G as follows:
	- For a node u of the contracted graph, let S_u be the set of original nodes that have been merged into u (the nodes that u represents)
	- Consider a cut (A, B) of the contracted graph
	- (A', B') with

$$
A' := \bigcup_{u \in A} S_u, \qquad B' := \bigcup_{v \in B} S_v
$$

is a cut of G .

• The edges crossing cut (A, B) are in one-to-one correspondence with the edges crossing cut (A', B') .

Contraction and Cuts

Lemma: The contraction algorithm outputs a cut (A, B) of the input graph G if and only if it never contracts an edge crossing (A, B) .

Proof:

- 1. If an edge crossing (A, B) is contracted, a pair of nodes $u \in A$, $v \in B$ is merged into the same node and the algorithm outputs a cut different from (A, B) .
- 2. If no edge of (A, B) is contracted, no two nodes $u \in A$, $v \in B$ end up in the same contracted node because every path connecting u and v in G contains some edge crossing (A, B)

In the end there are only 2 sets \rightarrow output is (A, B)

Theorem: The probability that the algorithm outputs a specific minimum cut is at least $2ln(n-1) = 1/\binom{n}{2}$ $\binom{n}{2}$.

To prove the theorem, we need the following claim:

Claim: If the minimum cut size of a multigraph G (no self-loops) is k , G has at least $kn/2$ edges.

Proof:

- Min cut has size $k \implies$ all nodes have degree $\geq k$
	- A node ν of degree $< k$ gives a cut $(\{v\} , V \setminus \{v\})$ of size $< k$
- Number of edges $m = \frac{1}{2} \cdot \sum_{v} deg(v) \geq \frac{1}{2} \cdot nk$

Theorem: The probability that the algorithm outputs a specific minimum cut is at least $2/n(n-1)$.

Proof:

- Consider a fixed min cut (A, B) , assume (A, B) has size k
- The algorithm outputs (A, B) iff none of the k edges crossing (A, B) gets contracted.
- Before contraction *i*, there are $n + 1 i$ nodes \rightarrow and thus $\geq (n + 1 - i)k/2$ edges
- If no edge crossing (A, B) is contracted before, the probability to contract an edge crossing (A, B) in step i is at most

$$
\frac{\underline{k}}{(n+1-i)k} = \frac{2}{n+1-i}.
$$

Theorem: The probability that the algorithm outputs a specific minimum cut is at least $2/n(n-1)$. **Proof:**

- If no edge crossing (A, B) is contracted before, the probability to contract an edge crossing (A, B) in step i is at most $\frac{2}{n+1-i}$.
- Event \mathcal{E}_i : edge contracted in step *i* is **not** crossing (A, B)

• Goal: show that
$$
\mathbb{P}(\mathcal{E}_1 \cap \cdots \cap \mathcal{E}_{n-2}) \geq 2/(n(n-1))
$$

$$
\mathbb{P}(\text{alg. returns } (A, B))
$$

= $\mathbb{P}(\mathcal{E}_1 \cap \mathcal{E}_2 \cap \dots \cap \mathcal{E}_{n-2})$
= $\mathbb{P}(\mathcal{E}_1) \cdot \mathbb{P}(\mathcal{E}_2 \mid \mathcal{E}_1) \cdot \mathbb{P}(\mathcal{E}_3 \mid \mathcal{E}_1 \cap \mathcal{E}_2) \cdot \dots \cdot \mathbb{P}(\mathcal{E}_{n-2} \mid \mathcal{E}_1 \cap \mathcal{E}_2 \cap \dots \cap \mathcal{E}_{n-3})$

$$
\frac{\mathbb{P}(\mathcal{E}_{i} \mid \mathcal{E}_{1} \cap \dots \cap \mathcal{E}_{i-1}) \ge 1 - \frac{2}{n+1-i} = \frac{n-i-1}{n-i+1}}{\mathbb{P}(\mathcal{E}_{i} \mid \mathcal{E}_{1} \cap \dots \cap \mathcal{E}_{i-1}) \le \frac{2}{n+1-i}}
$$

Theorem: The probability that the algorithm outputs a minimum cut is at least $2/n(n - 1)$. **Proof:**

• $\mathbb{P}(\mathcal{E}_i | \mathcal{E}_1 \cap \dots \cap \mathcal{E}_{i-1}) \ge 1 - \frac{2}{n-i+1}$ $=\frac{n-i-1}{n-i+1}$ $n-i+1$

• No edge crossing (A, B) contracted: event $\mathcal{E} = \bigcap_{i=1}^{n-2} \mathcal{E}_i$ $\mathbb{P}(\mathcal{E}) = \mathbb{P}(\mathcal{E}_1 \cap \cdots \cap \mathcal{E}_{n-2})$ $= \mathbb{P}(\mathcal{E}_1) \cdot \mathbb{P}(\mathcal{E}_2 | \mathcal{E}_1) \cdot \cdots \cdot \mathbb{P}(\mathcal{E}_{n-2} | \mathcal{E}_1 \cap \cdots \cap \mathcal{E}_{n-3})$

Randomized Min Cut Algorithm

Theorem: If the contraction algorithm is repeated $O(n^2 \log n)$ times, one of the $O(n^2 \log n)$ instances returns a min. cut w.h.p.

Proof:

• Probability to not get a minimum cut in $c \cdot {n \choose 2}$ $\binom{n}{2} \cdot \ln n$ iterations:

$$
\left(1 - \frac{1}{\binom{n}{2}}\right)^{c \cdot \binom{n}{2} \cdot \ln n} \le e^{-c \ln n} = \frac{1}{n^c}
$$

$$
\forall x \in \mathbb{R} : \underbrace{(1+x) \le e^x}
$$

Corollary: The contraction algorithm allows to compute a minimum cut in $O(n^4 \log n)$ time w.h.p.

• It remains to show that each instance can be implemented in $O(n^2)$ time.