
Algorithm Theory – WS 2024/25

Chapter 7 : Randomization II
Randomized Quicksort / Randomized Min Cut Algorithm

Fabian Kuhn
Dept. of Computer Science
Algorithms and Complexity



Randomized Quicksort
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Randomized Quicksort Analysis

Randomized Quicksort: pick uniform random element as pivot

Running Time of sorting 𝑛 elements:
• Let us just count the number of comparisons
• In the partitioning step, all 𝑛 − 1 non-pivot elements have to be compared to the pivot

• Number of comparisons:

𝒏 − 𝟏	 +	#𝐜𝐨𝐦𝐩𝐚𝐫𝐢𝐬𝐨𝐧𝐬	𝐢𝐧	𝐫𝐞𝐜𝐮𝐫𝐬𝐢𝐯𝐞	𝐜𝐚𝐥𝐥𝐬

• If rank of pivot is 𝒓: recursive calls with 𝒓 − 𝟏 and 𝒏 − 𝒓 elements

depends on choice of pivot

𝑟 − 1 𝑛 − 𝑟
1, 2, 3, … , 	 𝑟 − 1, 𝑟, 𝑟 + 1,… , 	 𝑛 − 1, 𝑛
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Randomized Quicksort Analysis

We have seen that:

𝔼 𝐶 =:
!"#

$

ℙ 𝑅 = 𝑟 ⋅ 𝑛 − 1 + 𝔼 𝐶ℓ 𝑅 = 𝑟 + 𝔼[𝐶!|𝑅 = 𝑟]

Define: 𝑻(𝒏): expected number of comparisons when sorting 𝑛 elements

	 𝔼 𝐶 = 𝑇 𝑛
𝔼 𝐶ℓ 𝑅 = 𝑟 = 𝑇 𝑟 − 1
𝔼 𝐶! 𝑅 = 𝑟 = 𝑇(𝑛 − 𝑟)

Recursion:

𝑻 𝒏 =:
𝒓"𝟏

𝒏
𝟏
𝒏 ⋅ 𝒏 − 𝟏 + 𝑻 𝒓 − 𝟏 + 𝑻 𝒏 − 𝒓

	

𝑻 𝟎 = 𝑻 𝟏 = 𝟎

= %1 𝑛
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Randomized Quicksort Analysis

Theorem: The expected number of comparisons when sorting 𝑛 elements using randomized 
quicksort is 𝑇 𝑛 ≤ 2𝑛 ln 𝑛.
Proof: (by induction on 𝑛)

𝑇 𝑛 = )
#$%

&
1
𝑛
⋅ 𝑛 − 1 + 𝑇 𝑟 − 1 + 𝑇 𝑛 − 𝑟 , 𝑇 0 = 𝑇(1) = 0

= 𝑛 − 1 +
1
𝑛 ⋅ )

'$(

&)%

𝑇 𝑖 + 𝑇 𝑛 − 𝑖 − 1

= 𝑛 − 1 +
2
𝑛
⋅ )
'$%

&)%

𝑇(𝑖)

≤ 𝑛 − 1 +
4
𝑛 ⋅ )

'$%

&)%

𝑖 ⋅ ln 𝑖

< 𝑛 − 1 +
4
𝑛
⋅ 9
%

&
𝑥 ln 𝑥 𝑑𝑥

𝑥 ⋅ ln 𝑥
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Randomized Quicksort Analysis

Theorem: The expected number of comparisons when sorting 𝑛 elements using randomized 
quicksort is 𝑇 𝑛 ≤ 2𝑛 ln 𝑛.
Proof:

𝑇 𝑛 ≤ 𝑛 − 1 +
4
𝑛
⋅ L
#

$
𝑥 ln 𝑥	𝑑𝑥

9𝑥 ln 𝑥	𝑑𝑥 =
𝑥* ln 𝑥
2

−
𝑥*

4

𝑇 𝑛 ≤ 𝑛 − 1 +
4
𝑛
⋅
𝑛* ln 𝑛
2

−
𝑛*

4
+
1
4

= 𝑛 − 1 + 2𝑛 ln 𝑛 − 𝑛 + 1

= 2𝑛 ln 𝑛 +
1
𝑛
− 1

< 2𝑛 ln 𝑛
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Alternative Randomized Quicksort Analysis 

Array to sort: [ 7 , 3 , 1 , 10 , 14 , 8 , 12 , 9 , 4 , 6 , 5 , 15 , 2 , 13 , 11 ]

Viewing quicksort run as a tree:
[ 7 , 3 , 1 , 10 , 14 , 8 , 12 , 9 , 4 , 6 , 5 , 15 , 2 , 13 , 11 ]

[ 3 , 1 , 4 , 6 , 5 , 2 ] [ 10 , 14 , 8 , 12 , 9 , 15 , 13 , 11 ]

[ 3 , 1 , 4 , 2 ] [ 6 ] [ 10 , 8 , 9 , 11 ] [ 14 , 15 , 13 ]

[ 1 ] [ 3 , 4 ] [8 , 9 ] [ 11 ] [ 13 , 14 ]

[ 3 ] [ 9 ] [ 14 ]
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Comparisons

• Comparisons are only between pivot and non-pivot elements
• Every element can only be the pivot once:

   à every 2 elements can only be compared once!

• W.l.o.g., assume that the elements to sort are 1,2, … , 𝑛
• Elements 𝑖 and 𝑗 are compared if and only if either 𝑖 or 𝑗 is a pivot before any element ℎ: 𝑖 < ℎ <
𝑗 is chosen as pivot
• i.e., iff 𝑖 is an ancestor of 𝑗 or 𝑗 is an ancestor of 𝑖

1 𝑛𝒊 𝒋
𝒉

ℙ comparison	between	𝑖	and	𝑗 =
2

𝑗 − 𝑖 + 1

𝑗 − 𝑖 + 1 elements
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Counting Comparisons

Random variable for every pair of elements (𝑖, 𝑗), 𝑖 < 𝑗:

𝑿𝒊𝒋 = d1, if	there	is	a	comparison	between	𝑖	and	𝑗
0, otherwise	

ℙ 𝑋+, = 1 =
2

𝑗 − 𝑖 + 1
, 𝔼 𝑋+, =

2
𝑗 − 𝑖 + 1

Number of comparisons: 𝑿

𝑋 =:
+-,

𝑋+,

• What is 𝔼 𝑋 ?
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Randomized Quicksort Analysis

Theorem: The expected number of comparisons when sorting 𝑛 elements using randomized 
quicksort is 𝑇 𝑛 ≤ 2𝑛 ln 𝑛.
Proof:
• Linearity of expectation:

For all random variables 𝑋#, … , 𝑋$ and all 𝑎#, … , 𝑎$ ∈ ℝ,

𝔼 :
+

$

𝑎+𝑋+ =:
+

$

𝑎+𝔼 𝑋+ .

𝑋 =:
+-,

𝑋+, 	 ⟹ 	 𝔼 𝑋 = 𝔼 :
+-,

𝑋+, =:
+-,

𝔼 𝑋+,

=:
+-,

2
𝑗 − 𝑖 + 1 = :

+"#

$.#

:
,"+/#

$
2

𝑗 − 𝑖 + 1
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Randomized Quicksort Analysis

Theorem: The expected number of comparisons when sorting 𝑛 elements using randomized 
quicksort is 𝑇 𝑛 ≤ 2𝑛 ln 𝑛.
Proof:

𝔼 𝑋 = 2 ⋅ :
+"#

$.#

:
,"+/#

$
1

𝑗 − 𝑖 + 1
= 2 ⋅ :

+"#

$.#

:
ℓ"0

$.+/#
1
ℓ

Harmonic Series:

𝐻 𝑘 ≔:
+"#

1
1
𝑖

𝐻(𝑘) ≤ 1 + ln 𝑘

≤ 2 ⋅ :
+"#

$.#

:
ℓ"0

$
1
ℓ

= 𝐻 𝑛 − 1

= 2 ⋅ 𝑛 − 1 ⋅ 𝐻 𝑛 − 1

≤ 2 ⋅ 𝑛 − 1 ⋅ ln 𝑛
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Quicksort: High Probability Bound

• We have seen that the number of comparisons of randomized quicksort is 𝑂(𝑛 log 𝑛) in 
expectation.

• Can we also show that the number of comparisons is 𝑂(𝑛 log 𝑛) with high probability?

• Recall:

On each recursion level, each pivot is compared once with each other element that is still in the 
same “part”
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Counting Number of Comparisons

• We looked at 2 ways to count the number of comparisons
• recursive characterization of the expected number
• number of different pairs of values that are compared

Let’s consider yet another way:
• Each comparison is between a pivot and a non-pivot
• How many times is a specific array element 𝑥 compared as a non-pivot?

Element 𝑥 is compared as a non-pivot to a pivot once in every recursion level until one of the 
following two conditions apply:

𝑥 is chosen as a pivot or 𝑥 is alone

Fabian Kuhn – Algorithm Theory 13



Successful Recursion Level

• Consider a specific recursion level ℓ
• Where the first recursion level is level 1

Define 𝑲ℓ as follows: 
• If 𝑥 is contained in a subarray on recursion level ℓ, then 𝐾ℓ is defined as the length of the subarray 

containing 𝑥 on level ℓ.
• We therefore have 𝐾% = 𝑛 and 𝐾ℓ+% ≤ 𝐾ℓ for all ℓ ≥ 1

• If 𝑥 has been chosen as a pivot before level ℓ, we set 𝐾ℓ ≔ 1

#comparisons of 𝑥 as non-pivot ≤ #levels ℓ for which 𝐾ℓ > 1

Definition: We say that recursion level ℓ is successful for element 𝑥 iff the following is true:

𝐾ℓ/# = 1	 or	 𝐾ℓ/# ≤
2
3 ⋅ 𝐾ℓ
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Successful Recursion Level

Lemma: For every recursion level ℓ and every array element 𝑥, it holds that level ℓ is successful for 
𝑥 with probability at least ⁄# 2, independently of what happens in other recursion levels.

Proof:
• Assume that 𝐾ℓ > 1, otherwise level ℓ is trivially successful

• If pivot is in the middle part, both remaining parts have size 

≤ 𝐾ℓ − z𝐾ℓ 3 − 1 ≤ z2 3 ⋅ 𝐾ℓ.
• In this case, level ℓ is successful

• The probability that the pivot in in the middle part is ≥ ⁄# 2.

≥ 0𝐾ℓ 3 = 0𝐾ℓ 3 ≥ 0𝐾ℓ 3
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Number of Successful Recursion Levels

Lemma: If among the first ℓ recursion levels, at least log ⁄" #
(𝑛) are successful for element 𝑥, we 

have 𝐾ℓ/# = 1.

Proof:
• We know that 

𝐾# = 𝑛, ∀𝑖 ≥ 1 ∶ 𝐾+/# ≤ 𝐾+

• If level 𝑖 is successful, then 𝐾+/# ≤ ⁄0 2 ⋅ 𝐾+ or 𝐾+/# = 1

• If 𝑠 among the first ℓ levels are successful, then

𝐾ℓ/# ≤ max 1, 𝑛 ⋅ z2 3
4

• If 𝑠 ≥ log ⁄" #
(𝑛), then 𝐾ℓ/# ≤ 1.
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Chernoff Bounds

• Let 𝑋#, … , 𝑋$ be independent 0-1 random variables and define 𝑝+ ≔ ℙ(𝑋+ = 1).
• Consider the random variable 𝑋 = ∑+"#$ 𝑋+
• We have 𝜇 ≔ 𝔼 𝑋 = ∑+"#$ 𝔼 𝑋+ = ∑+"#$ 𝑝+

Chernoff Bound (Lower Tail):

∀𝜹 > 𝟎: 	 ℙ 𝑿 < 𝟏 − 𝜹 𝝁 < 𝒆. ⁄𝜹𝟐𝝁 𝟐

Chernoff Bound (Upper Tail):

∀𝜹 > 𝟎: 	 ℙ 𝑿 > 𝟏 + 𝜹 𝝁 <
𝒆𝜹

𝟏 + 𝜹 𝟏/𝜹

𝝁

< 𝒆. ⁄𝜹𝟐𝝁 𝟑

holds for 𝜹 ≤ 𝟏

If 𝑝+ = 𝑝 for all 𝑖:

𝑋 ∼ Bin 𝑛, 𝑝
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Chernoff Bounds, Example

Assume that a fair coin is flipped 𝑛 times. What is the probability to have 

1. less than 𝑛/3 heads?

2. more than 0.51𝑛 tails?

3. less than ⁄$ 0− 𝑐 ⋅ 	𝑛 ln 𝑛 tails?

𝑝' = 𝑝 =
1
2 , 	𝜇 ≔ 𝔼 𝑋 = 𝑛𝑝 =

𝑛
2

ℙ 𝑋 <
𝑛
3 = ℙ 𝑋 < 1 −

1
3 ⋅

𝑛
2 < 𝑒)

%
*⋅
%
-!⋅

&
* = 𝑒)&/-/

ℙ 𝑋 < 1 + 0.02 ⋅
𝑛
2

< 𝑒)
(.(*!
- ⋅&* ≈ 𝑒)(.((((//1&

ℙ 𝑋 < 1 −
2 𝑐 ⋅ 𝑛 ln 𝑛

𝑛
⋅
𝑛
2

< 𝑒)
23⋅& 45 &
*&! ⋅&* = 𝑒)3⋅45 & =

1
𝑛3

ℙ 𝑋 < 1 − 𝛿 𝜇 < 𝑒)
6!
* 7

ℙ 𝑋 > 1 + 𝛿 𝜇 < 𝑒)
6!
- 7
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± 𝑂 𝑛 log 𝑛



Number of Comparisons for 𝑥

Lemma: For every array element 𝑥, with high probability, as a non-pivot, 𝑥 is compared to a pivot at 
most 𝑂 log 𝑛  times.

Proof:
• Consider some level 𝑖 ≥ 1, and let  if level 𝑖 not successful

𝑞+ ≔ ℙ level 𝑖 successful for 𝑥	|	history up to level 𝑖

• Previous lemma ⟹ 𝑞+ ≥ ⁄# 2

• Define random variable

𝑋+ ≔ �
0 if level 𝑖 not successful for	𝑥	
1 with probability ⁄# 2

9%
	 if level 𝑖 successful for	𝑥

• Then, ℙ 𝑋+ = 1 = ⁄# 2 and 𝑋+ are independent for different 𝑖

Fabian Kuhn – Algorithm Theory 19



Number of Comparisons for 𝑥

Lemma: For every array element 𝑥, with high probability, as a non-pivot, 𝑥 is compared to a pivot at 
most 𝑂 log 𝑛  times.

Proof:
• 𝑋+ independent, ℙ 𝑋+ = 1 = ⁄# 2, 𝑋+ = 1 ⟹ level 𝑖 successful

• Consider the first 𝑡 levels and define
• 𝔼 𝑋 = ⁄% - ⋅ 𝑡
• 𝑋 ≤ successful levels for 𝑥 among first 𝑡 levels

• Hence, if 𝑋 ≥ log ⁄" #
(𝑛), then 𝐾:/# = 1

• We thus need that for any const. 𝑐 > 0 and some 𝑡 = 𝑂 log 𝑛 ,

ℙ 𝑋 < log ;2 0
(𝑛) ≤

1
𝑛<

𝑋 ≔:
+

:

𝑋+
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Number of Comparisons for 𝑥

Lemma: For every array element 𝑥, with high probability, as a non-pivot, 𝑥 is compared to a pivot at 
most 𝑂 log 𝑛  times.

Proof:
• 𝜇 ≔ 𝔼 𝑋 = ⁄# 2 ⋅ 𝑡, for 𝑐 > 0 and some 𝑡 = 𝑂 log 𝑛 , we need

ℙ 𝑋 < log ;2 0
(𝑛) ≤

1
𝑛<

• Chernoff:

• We need  𝜇 ≥ 2 ⋅ log ⁄" #
(𝑛)  such that  ⁄= 0 ≥ log ⁄" #

𝑛

• We need  𝜇 ≥ 8𝑐 ⋅ ln 𝑛  such that   𝑒. ⁄= > ≤ 𝑛.<

• We can therefore choose 𝑡 = 3 ⋅ 𝜇 = 𝑂 log 𝑛 .

ℙ 𝑋 < 1 − 𝛿 𝜇 ≤ 𝑒.
?#
0 ⋅= 	 ⟹ 	 ℙ 𝑋 < z𝜇 2 ≤ 𝑒.

=
>

Fabian Kuhn – Algorithm Theory 21



Number of Comparisons

Theorem: With high probability, the total number of comparisons is at most 𝑶 𝒏 𝐥𝐨𝐠𝒏 .

Proof:
• For every const. 𝑐 > 0, there exists const. 𝛼 > 0, s.t. for every element 𝑥, the number of 

comparisons for element 𝑥 as a non-pivot is ≤ 𝛼 ln 𝑛 with probability at least 1 − ⁄# $&.

• Define event ℰA ≔ #comparisons for 𝑥 as non−pivot > 𝛼 ln 𝑛
• ℙ ℰ8 ≤ 𝑛)3

• Union bound over all events ℰA:

ℙ �
A"#

$

ℰA ≤ :
A"#

$

ℙ ℰA ≤ 𝑛 ⋅
1
𝑛<
=

1
𝑛<.#
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Relation to Random Binary Search Trees

Consider Recursion Tree: Label each subarray of size > 1 by the pivot and each subarray of size = 1 by the 
element in it.

• We get a binary search tree (BST) on the 𝑛 elements
• Corresponds to the BST with a random insertion order

• #comparisons of element 𝑥 as non-pivot = depth of 𝑥 in tree
• Our analysis shows that the height of a random BST is 𝑂 log 𝑛 , w.h.p.

• #comp. of rand. quicksort = 𝑛 ⋅ average depth in a random BST

[ 7 , 3 , 1 , 10 , 14 , 8 , 12 , 9 , 4 , 6 , 5 , 15 , 2 , 13 , 11 ]

[ 3 , 1 , 4 , 6 , 5 , 2 ] [ 10 , 14 , 8 , 12 , 9 , 15 , 13 , 11 ]

[ 3 , 1 , 4 , 2 ] [ 6 ] [ 10 , 8 , 9 , 11 ] [ 14 , 15 , 13 ]

[ 1 ] [ 3 , 4 ] [8 , 9 ] [ 11 ] [ 13 , 14 ]

[ 3 ] [ 9 ] [ 14 ]
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Types of Randomized Algorithms

Las Vegas Algorithm:
• always a correct solution
• running time is a random variable

• Example: randomized quicksort, contention resolution

Monte Carlo Algorithm:
• probabilistic correctness guarantee (mostly correct)
• fixed (deterministic) running time 

• Example: primality test
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Minimum Cut

Reminder: Given a graph 𝐺 = 𝑉, 𝐸 , a cut is a partition (𝐴, 𝐵) of 𝑉 
such that 𝑉 = 𝐴 ∪ 𝐵, 𝐴 ∩ 𝐵 = ∅, 𝐴, 𝐵 ≠ ∅

Size of the cut (𝑨, 𝑩): # of edges crossing the cut
• For weighted graphs, total edge weight crossing the cut

Goal: Find a cut of minimal size (i.e., of size 𝜆(𝐺))

Maximum-flow based algorithm:
• Fix 𝑠, compute min 𝑠-𝑡-cut for all 𝑡 ≠ 𝑠
• 𝑂 𝑚 ⋅ 𝜆 𝐺 = 𝑂(𝑚𝑛) per 𝑠-𝑡 cut

• Gives an O 𝑚𝑛𝜆 𝐺 = 𝑂(𝑚𝑛0)-algorithm



Edge Contractions

• In the following, we consider multi-graphs that can have multiple edges (but no self-loops)

Contracting edge {𝒖, 𝒗}:
• Replace nodes 𝑢, 𝑣 by new node 𝑤
• For all edges {𝑢, 𝑥} and {𝑣, 𝑥}, add an edge {𝑤, 𝑥}
• Remove self-loops created at node 𝑤

not okok

𝒂

𝒖

𝒗

𝒄

𝒃

𝒂
𝒘 𝒄

𝒃
contract {𝒖, 𝒗}



Properties of Edge Contractions

Nodes:
• After contracting {𝑢, 𝑣}, the new node represents 𝑢 and 𝑣
• After a series of contractions, each node represents a subset of the original nodes

Cuts:
• Assume in the contracted graph, 𝑤 represents nodes 𝑆B ⊂ 𝑉
• The edges of a node 𝑤 in a contracted graph are in a one-to-one correspondence with the edges 

crossing the cut 𝑆B , 𝑉 ∖ 𝑆B

𝟏 𝟐

𝟑

𝟒 𝟓

𝟔

𝟑

𝟒 𝟓

𝟔

(𝟏, 𝟐) (𝟏, 𝟐)

𝟑

𝟓
(𝟒, 𝟔)

(𝟏, 𝟐)

(𝟒, 𝟓, 𝟔)

𝟑

(𝟏, 𝟐)

(𝟑, 𝟒, 𝟓, 𝟔)

{𝟏, 𝟐} {𝟒, 𝟔} {𝟓, (𝟒, 𝟔)} {𝟑, (𝟒, 𝟓, 𝟔)}



Randomized Contraction Algorithm

Algorithm:

    while there are > 2 nodes do
          contract a uniformly random edge
    return cut induced by the last two remaining nodes
                 (cut defined by the original node sets represented by the last 2 nodes) 

Theorem: The random contraction algorithm returns a minimum cut with probability 
at least ⁄1 𝑂(𝑛0).
• We will show this next.

Theorem: The random contraction algorithm can be implemented in time 𝑂(𝑛0).
• There are 𝑛 − 2 contractions, each can be done in time 𝑂(𝑛).
• We will see this later.



Contractions and Cuts

Lemma: If two original nodes 𝑢, 𝑣 ∈ 𝑉 are merged into the same node of the contracted graph, 
there is a path connecting 𝑢 and 𝑣 in the original graph s.t. all edges on the path are contracted.

Proof:
• Any edge 𝑥, 𝑦  in the contracted graph corresponds to some edge in the original graph between 

two nodes 𝑢K and 𝑣′ in the sets 𝑆A and 𝑆L represented by 𝑥 and 𝑦.

• Contracting {𝑥, 𝑦} merges the node sets 𝑆A and 𝑆L represented by 𝑥 and 𝑦 and does not change 
any of the other node sets.

• The claim then follows by induction on the number of edge contractions.

𝒖 𝒗𝒖′ 𝒗′𝑺𝒙 𝑺𝒚



Contractions and Cuts

Lemma: During the contraction algorithm, the edge connectivity (i.e., the size of the min. cut) 
cannot get smaller.

Proof:
• All cuts in a (partially) contracted graph correspond to cuts of the same size in the original graph 𝐺 

as follows:
• For a node 𝑢 of the contracted graph, let 𝑆9 be the set of original nodes that have been merged into 𝑢 

(the nodes that 𝑢 represents)
• Consider a cut (𝐴, 𝐵) of the contracted graph
• 𝐴:, 𝐵:  with

𝐴: ≔^
9∈<

𝑆9 , 𝐵: ≔^
=∈>

𝑆=

is a cut of 𝐺.
• The edges crossing cut (𝐴, 𝐵) are in one-to-one correspondence with the edges crossing cut (𝐴:, 𝐵:).



Contraction and Cuts

Lemma: The contraction algorithm outputs a cut (𝐴, 𝐵) of the input graph 𝐺 if and only if it never 
contracts an edge crossing (𝐴, 𝐵).

Proof:
1. If an edge crossing (𝐴, 𝐵) is contracted, a pair of nodes 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵 is merged into the same 

node and the algorithm outputs a cut different from (𝐴, 𝐵).

2. If no edge of (𝐴, 𝐵) is contracted, no two nodes 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵 end up in the same contracted 
node because every path connecting 𝑢 and 𝑣 in 𝐺 contains some edge crossing 𝐴, 𝐵

In the end there are only 2 sets à output is (𝐴, 𝐵)



Getting The Min Cut

Theorem: The probability that the algorithm outputs a specific minimum cut is at least 
⁄2 𝑛(𝑛 − 1) = z1 𝑛

2 .

To prove the theorem, we need the following claim:

Claim: If the minimum cut size of a multigraph 𝐺 (no self-loops) is 𝑘, 𝐺 has at least ⁄𝑘𝑛 2 edges.

Proof:
• Min cut has size 𝑘 ⟹ all nodes have degree ≥ 𝑘

• A node 𝑣 of degree < 𝑘 gives a cut 𝑣 , 𝑉 ∖ 𝑣  of size < 𝑘

• Number of edges 𝑚 = ⁄# 0 ⋅ ∑M deg 𝑣 ≥ ⁄# 0 ⋅ 𝑛𝑘

≥ 𝑘

𝑣 𝑉 ∖ 𝑣



Getting The Min Cut

Theorem: The probability that the algorithm outputs a specific minimum cut is at least ⁄2 𝑛(𝑛 − 1).

Proof:
• Consider a fixed min cut (𝐴, 𝐵), assume (𝐴, 𝐵) has size 𝑘
• The algorithm outputs (𝐴, 𝐵) iff none of the 𝑘 edges crossing (𝐴, 𝐵) gets contracted.
• Before contraction 𝑖, there are 𝑛 + 1 − 𝑖 nodes
à and thus ≥ ⁄𝑛 + 1 − 𝑖 𝑘 2 edges

• If no edge crossing (𝐴, 𝐵) is contracted before, the probability to contract an edge crossing (𝐴, 𝐵) 
in step 𝑖 is at most

𝑘
𝑛 + 1 − 𝑖 𝑘

2

=
2

𝑛 + 1 − 𝑖 .

𝑨 𝑩⋮

𝑘 edges



Getting The Min Cut

Theorem: The probability that the algorithm outputs a specific minimum cut is at least ⁄2 𝑛(𝑛 − 1).
Proof:
• If no edge crossing (𝐴, 𝐵) is contracted before, the probability to contract an edge crossing (𝐴, 𝐵) 

in step 𝑖 is at most ⁄0 $/#.+.

• Event ℰ+: edge contracted in step 𝑖 is not crossing (𝐴, 𝐵)
• Goal: show that ℙ ℰ% ∩⋯∩ ℰ&)* ≥ ⁄2 𝑛(𝑛 − 1).

ℙ alg. returns 𝐴, 𝐵
	 = ℙ ℰ% ∩ ℰ* ∩⋯∩ ℰ&)*
	 = ℙ ℰ% ⋅ ℙ ℰ*	|	ℰ% ⋅ ℙ ℰ-	|	ℰ% ∩ ℰ* ⋅ ⋯ ⋅ ℙ ℰ&)*	|	ℰ% ∩ ℰ* ∩⋯∩ ℰ&)-

ℙ ℰ=	|	ℰ> ∩⋯∩ ℰ=?> ≥ 1 −
2

𝑛 + 1 − 𝑖
=
𝑛 − 𝑖 − 1
𝑛 − 𝑖 + 1



Getting The Min Cut

Theorem: The probability that the algorithm outputs a minimum cut is at least ⁄2 𝑛(𝑛 − 1).
Proof:

• ℙ ℰ+ 	|	ℰ# ∩⋯∩ ℰ+.# ≥ 1 − 0
$.+/#

= $.+.#
$.+/#

• No edge crossing (𝐴, 𝐵) contracted: event ℰ = ⋂+"#
$.0ℰ+

ℙ ℰ = ℙ ℰ# ∩⋯∩ ℰ$.0
	

	 = ℙ ℰ# ⋅ ℙ ℰ0	|	ℰ# ⋅⋅ ⋯ ⋅ ℙ ℰ$.0	|	ℰ# ∩⋯∩ ℰ$.2
	

	 ≥
𝑛 − 2
𝑛 ⋅

𝑛 − 3
𝑛 − 1 ⋅

𝑛 − 4
𝑛 − 2 ⋅

𝑛 − 5
𝑛 − 3 ⋅

𝑛 − 6
𝑛 − 4 ⋅ ⋯ ⋅

4
6 ⋅
3
5 ⋅
2
4 ⋅
1
3	

	

	 =
2

𝑛 𝑛 − 1
=

1
𝑛
2



Randomized Min Cut Algorithm

Theorem: If the contraction algorithm is repeated 𝑂(𝑛0 log 𝑛) times, one of the 𝑂 𝑛0 log 𝑛  
instances returns a min. cut w.h.p.

Proof:

• Probability to not get a minimum cut in 𝑐 ⋅ 𝑛
2 ⋅ ln 𝑛 iterations:

1 −
1
𝑛
2

<⋅ $0 ⋅NO $
≤ 𝑒.< NO $ =

1
𝑛<

Corollary: The contraction algorithm allows to compute a minimum cut in 𝑂 𝑛P log 𝑛  time w.h.p.
• It remains to show that each instance can be implemented in 𝑂 𝑛0  time.

∀𝑥 ∈ ℝ ∶ 1 + 𝑥 ≤ 𝑒'


