

(4+4 Points)

Theoretical Computer Science - Bridging Course Exercise Sheet 7

Due: Tuesday, 10th of December 2024, 12:00 pm

Exercise 1: Undecidable or Not Turing recongnizable Problems (4+4 Points)

1. Show that $EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are Turing Machines and } L(M_1) = L(M_2) \}$ is undecidable.

Hint: You may use that $E_{TM} = \{ \langle M \rangle \mid M \text{ is a Turing Machine and } L(M) = \emptyset \}$ is undecidable.

2. Fix an enumeration of all Turing machines (that have input alphabet Σ): $\langle M_1 \rangle, \langle M_2 \rangle, \langle M_3 \rangle, \ldots$ Fix also an enumeration of all words over Σ : w_1, w_2, w_3, \ldots .

Prove that language $L = \{w \in \Sigma^* \mid w = w_i, \text{ for some } i, \text{ and } M_i \text{ does not accept } w_i\}$ is not Turing recognizable.

Hint: Try to find a contradiction to the existence of a Turing machine that recognizes L.

Exercise 2: The Halting Problem Revisited

Show that both the halting problem and its special version are both undecidable.

1. The *halting problem* is defined as

 $H = \{ \langle M, w \rangle \mid \langle M \rangle \text{ encodes a TM and } M \text{ halts on string } w \}.$

Hint: Assume H is decidable and try to reach a contradiction by showing that some known undecidable problem (cf. from the lecture) is decidable.

2. The special halting problem is defined as

 $H_s = \{ \langle M \rangle \mid \langle M \rangle \text{ encodes a TM and } M \text{ halts on } \langle M \rangle \}.$

Hint: Assume that M is a TM which decides H_s and then construct a TM which halts iff M does not halt. Use this construction to find a contradiction.

Exercise 3: O-Notation Formal Proofs (1+2+3 Points)

Roughly speaking, the set $\mathcal{O}(f)$ contains all functions that are not growing faster than the function f when additive or multiplicative constants are neglected. Formally:

$$g \in \mathcal{O}(f) \iff \exists c > 0, \exists M \in \mathbb{N}, \forall n \ge M : g(n) \le c \cdot f(n)$$

For the following pairs of functions, state whether $f \in \mathcal{O}(g)$ or $g \in \mathcal{O}(f)$ or both. Proof your claims (you do not have to prove a negative result \notin , though).

(a) $f(n) = 100n, g(n) = 0.1 \cdot n^2$

(b)
$$f(n) = \sqrt[3]{n^2}, g(n) = \sqrt{n}$$

(c) $f(n) = \log_2(2^n \cdot n^3), g(n) = 3n$

Hint: You may use that $\log_2 n \leq n$ for all $n \in \mathbb{N}$.

Exercise 4: Sort Functions by Asymptotic Growth

(7 Points)

Give a sequence of the following functions sorted by asymptotic growth, i.e., for consecutive functions g, f in your sequence, it should hold $g \in \mathcal{O}(f)$. Write " $g \cong f$ " if $f \in \mathcal{O}(g)$ and $g \in \mathcal{O}(f)$.

$\log_2(n!)$	\sqrt{n}	2^n	$\log_2(n^2)$
3^n	n^{100}	$\log_2(\sqrt{n})$	$(\log_2 n)^2$
$\log_{10} n$	$10^{100} \cdot n$	n!	$n\log_2 n$
$n \cdot 2^n$	n^n	$\sqrt{\log_2 n}$	n^2