

Theoretical Computer Science - Bridging Course Exercise Sheet 11

Due: Tuesday, 21st of January 2025, 12:00 pm

Exercise 1: Construct Formulae

(1+1+1 Points)

(2+3+3 Points)

Let $S = \langle \{x, y, z\}, \emptyset, \emptyset, \{R\} \rangle$ be a signature. Translate the following sentences of first order formula over S into idiomatic English. Use R(x, y) as statement 'x is a part of y'.

- (a) $\exists x \forall y R(x, y)$.
- (b) $\exists y \forall x R(x, y)$.
- (c) $\forall x \forall y \exists z (R(x, z) \land R(y, z))$

Exercise 2: FOL: Is it a model?

Consider the following **first order** formulae

$$\begin{split} \varphi_1 &:= \forall x R(x, x) \\ \varphi_2 &:= \forall x \forall y \ R(x, y) \to (\exists z R(x, z) \land R(z, y)) \\ \varphi_3 &:= \exists x \exists y \ (\neg R(x, y) \land \neg R(y, x)) \end{split}$$

over signature S where x, y, z are variable symbols and R is a binary predicate. Give an interpretation

- (a) I_1 which is a **model** of $\varphi_1 \wedge \varphi_2$.
- (b) I_2 which is **no model** of $\varphi_1 \wedge \varphi_2 \wedge \varphi_3$.
- (c) I_3 which is a **model** of $\varphi_1 \wedge \varphi_2 \wedge \varphi_3$.

Exercise 3: FOL: Entailment

Let φ, ψ be first order formulae over signature \mathcal{S} . Similar to propositional logic, in predicate logic we write $\varphi \models \psi$ if every model of φ is also a model for ψ . We write $\varphi \equiv \psi$ if both $\varphi \models \psi$ and $\psi \models \varphi$. A *knowledge base KB* is a set of formulae. A model of *KB* is model for all formulae in *KB*. We write $KB \models \varphi$ if all models of *KB* are models of φ . Show or disprove the following entailments.

- (a) $(\exists x R(x)) \land (\exists x P(x)) \land (\exists x T(x)) \models \exists x (R(x) \land P(x) \land T(x)).$
- (b) $(\forall x \forall y f(x, y) \doteq f(y, x)) \land (\forall x f(x, \mathbf{c}) \doteq x) \models \forall x f(\mathbf{c}, x) \doteq x.$
- $\begin{array}{ll} (\mathrm{c}) & (\forall x \, R(x,x)) \, \land \, (\forall x \forall y \, R(x,y) \land R(y,x) \to x \doteq y) \, \land \, (\forall x \forall y \forall z \, R(x,y) \land R(y,z) \to R(x,z)) \\ & \models \forall x \forall y \, R(x,y) \lor R(y,x). \end{array}$

Hint: Consider order relations. E.g., $a \leq b$ (a less-equal b) and a|b (a divides b).

(3+3+3 Points)