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Exercise 1: Validness of Mathematical Induction (Bonus Points)

To prove that a statement P(n) is true for all n € N, mathematical induction can be stated as

(P(1) AVK(P(k) = P(k + 1)) = VnP(n)

P(1) stands for the Base Case, and P(k) = P(k + 1) for Induction Hypothesis. The statement above
is valid. i.e) if Antecedent is true, then the Consequent can’t be false. ,which justifies the use of Ma-
thematical Induction in this case. Using Contradiction, prove the validity of mathematical induction.
In other words, Using contradiction, prove that if P(1) AVk(P(k) = P(k + 1)) is true, then YnP(n)
necessarily follows.

Use the Well-Ordering Property of natural numbers to help finding a contradiction.

(Hint : Well-Ordering Property of natural numbers states that every nonempty subset of natural
numbers has a least element.)

Sample Solution

By negating the consequent VnP(n), assume there exists n € N such that P(n) is false.

Let S be the set of natural numbers that make P(n) false.

S has a least element according to the well-ordering property of natural numbers. Let’s call this least
element m.

As m # 1, so m > 1, which makes m —1 € N.m — 1 ¢ S, as m is the least element of S. According
to the Vk(P(k) = P(k + 1)), P(m) has to be true, and this contradicts the assumption we’ve made
earlier.

Exercise 2: Miscellaneous Mathematical Proofs (2+3+38+1 Points)

1. Let S(n) = >_" i be the sum of the first n natural numbers and C(n) = Y. | i3 be the sum
of the first n cubes. Use mathematical induction to prove the following interesting conclusion:
C(n) = S%(n) for every n.

2. Let A, B, and C be subsets of U. Which of the following statements is true? Justify.

e f ANB=ANC, then B=C.
e fAUB=AUC, then B=C.
e AU B = AN B, where A is the compliment of A.



3. Let Ay, As, ..., A, be nonempty subsets of a Universal Set U, where n is any positive integer,
and n > 2. Using the result of above exercise, i.e. A; U Ay = A; N A, . Prove a generalized result

n n
a0
i=1 i=1

using induction.

4. Let Ay, Ag, ..., A, be nonempty subsets of U, where k is any positive integer. Construct a non-
empty subset A C U such that AN A; # ¢, for all ¢ € {1,2, ..., k}.

Sample Solution

1. Base case: for n = 1, 13 = (1)? is true.

Induction step: for each k > 1, we assume that the statement holds true for k i.e. C(k) = S%(k)
(induction hypothesis IH). Now, we need to prove that the statement holds true for £+ 1 i.e. we
want to show that C'(k + 1) = S?(k + 1).
Indeed first, we recall that S(n) = > i = %, hence S%(k + 1) = (W)z
(k+1)?(k+2)*

7 .

Next, we have that C(k + 1) = YF 3 + (k+1)% = C(k) + (k + 1)3 2 52(k) + (k + 1

(MDY 4 (k4 1)3 = (KR “‘“ )4 (k+1)3 = EHD2 (k2 4 gk 4 4) = “‘tj)g(kw) = 5% k+ 1).
Hence, the statement hO]db true for k£ + 1, which (-J]ldb our induction proof.

2. e False. We give a counterexample: take A = {1,2,3}, B = {1,4} and C = {1,5}, hence
ANB=ANC and B # C.
e False. We give a counterexample: take A = {1,2}, B = {1,3} and C = {2,3}, hence
AUB=AUC and B #C.
e (De Morgan’s law). Indeed,
r€AUB < ¢ AUB <= z¢ Aandz ¢ B <= z € A and
r€B < z€ ANB
hence, AUB = AN B.

3. Base case: for n=2, A; U Ay, = A; N A,.
Induction Hypothesis : for arbitrary k > 2, U:“:l A; = r]?:l A;, where A;, A,... A}, are subsets of
U. We assume this to be true for every possible collection of these k subsets of U. Using this,
we want this to be true, also for every possible collection of k41 subsets of U.
Induction Step(one version) : Starting from induction hypothesis, pick arbitrary Ay, and add
Aj 1 for both sides.

k - k . k+1_
UAmA,gH:ﬂAmAkH ﬂA
i=1 i=1 i=1

Note that for this problem, we have to show for all the possible statements P(n). If you take a
look at above way of proving it, it starts from induction hypothesis to build up (k + 1)th object.
If you do it this way, you need to make sure that you build all the possible objects to prove the
statement. This problem was easy because the cardinality of (k + 1)th object is just +1 from
(k)th object. So we only need to pick one arbitrary subset to go to (k + 1)th object.



But often, this method of building up from the induction hypothesis not always works well,
simply because there could be many ways to build up (k + 1)th objects, and you need to prove
for all of them. This is cumbersome and this often leads you to an incorrect proof. So another
version, which is stated below, would be a better and natural way to prove, as it starts from an
arbitrary object Ay, (So already covering all the (k + 1)th objects) and try to decompose it so
that we could utilize the induction hypothesis.

Induction Step(recommended version) : for some list of subsets Ay, ...Agq1,

WTS Uk:-f—l r]k+l A%

k+1 k k+1

UA —UAzUAk:-f—l UA N Ak Iﬂzﬁm= ﬂE
1 i=1

i=1 i=1

4. We construct A by choosing one element from each A;, for all i € {1,2,...,k}.

Exercise 3: Graphs (Part 1) (3+2 Points)

A simple graph is a graph without self loops, i.e., every edge of the graph is an edge between two
distinct nodes. The degree d(v) of a node v € V in an undirected graph G = (V, E) is the number of
its neighbors, i.e, d(v) = [{u € V' | {v,u} € E}|. Let m > 0 denote the number of edges in graph G.

1. Prove the handshaking lemma i.e. ) . d(v) = 2m via mathematical induction on m for any

simple graph G = (V, E).

2. Show that every simple graph with an odd number of nodes contains a node with even degree.

Sample Solution

1. We prove the handshaking lemma by mathematical induction on m.
Base step: let G = (V, E) be a graph where |V| = n and |E| = m = 0. Notice that G is the
empty graph on n nodes, hence ), .y d(v) = 0, thus the handshaking lemma is true on G.
Induction step: for each k, we assume that the statement holds true for k i.e. ) . d(v) = 2k
for any graph G = (V, E) where |V| = n and |E| = k (induction hypothesis IH).
Now, we need to prove that the statement holds true for k + 1 i.e. we want to show that
> vey @) =2(k + 1) for any G = (V, E) where |V| =n and |E| =k + 1.
Indeed, first we consider a graph G = (V, E) where |V| = n and |E| = k + 1. Let {u,v} be an
edge in G. Let G' = (V, E') where E' = E\{z,y} i.e. G’ is the graph obtained after removing
an edge {x,y} from G. Note that we denote by dg(v),dg(v) the degree of node v in G and G’
respectively.

First we notice that G’ has k edges, hence by IH ) _, dg/(v) = 2k.

Moreover, 3¢y der (v) = ZvEV\{x,y} der (v) + der () + dar (Y) = X pev (o) 46 (V) + (da(z) —
+ (da(y) — 1) = Xvev\fay) de(v) + da(2) + da(y) — 2 = D ev da(v) — 2.

Thus 3,y da(v) = Ypey dar(v) + 2 E 2k +2 = 2(k + 1)
Hence, the statement holds true for k + 1, which ends our induction proof.

(Note that how many cases we should divide into, if we have started off from induction hypothesis
to build up (k+1)th statement.)

2. Let G = (V, E) be a graph. We argue by contradiction. Assume that Yv € V, d(v) is odd. Now
since G has odd number of nodes, we notice that ) i d(v) is the sum of an odd number of
odd numbers, which is odd. But by the handshaking lemma ), d(v) must be even. This is a
contradiction. Thus our assumption must have been false and hence there must exist a node in
G with even degree.



Exercise 4: Graphs (Part 2) (2+4 Points)

A graph G = (V, E) is said to be connected if for every pair of vertices u,v € V such that u # v there
exists a path in G connecting u to v.

1. Prove that if G is connected, then for any two nonempty subsets Vi and V2 of V' such that
ViuVe =V and Vi NV, = ¢, there exists an edge joining a vertex in Vj to a vertex in V.

2. Let G be a simple, connected graph and P be a path of the longest length £ in G. Show that if
the two ends of P are adjacent, then V = V(P), where V(P) is the set of vertices of P.
Hint: Try to argue by contradiction.

Sample Solution

Definition: a family of sets Vi, Va, ..., Vi, where k is some positive integer is called a partition of V if
and only if all of the following conditions hold:

e For all 7 € {1,2...,k}, V; is a nonempty subset of V'
e U Vi=V
o VinV;=¢ foralli,j € {1,2...,k} such that ¢ # j

Intuitively you can think of a partition of a set V' as a set of non-empty subsets of V' such that every
element € V is in exactly one of these subsets.

1. Let V; and V3 be any two non empty subsets of V such that ViU Ve =V and Vi NVa = ¢ (i.e.
V1 and V; is a partition of the vertex set V). Let w € V] and v € V5. Since G is connected, there
exists a path in G joining u to v. For this to happen, there must then exist an edge joining some
vertex in V; to some other vertex in V5, which ends our proof.

2. Notations and definitions: A path P on n vertices say {vi,v2,...,vn} is a graph whose set of
edges is {{vi,vi+1};1 <7 < n — 1} and to describe it we write P = vivz...Up.
Let v; and v; be any two vertices of P, where 1 < i < j < n, then we denote by P, ., =
V;Vi+1...v; the subpath of P with ends v; and v;.

Solution: We argue by contradiction. Suppose V' # V(P), where we define V(P) := {v1,v2, ..., vp+1},
then there exists at least one vertex in V that is not in V(P). Hence, we can define V| :=
VAV(P) # ¢ and V, := V(P) # ¢. Notice that V] and V5 from a partition of V. Moreover
since GG is connected, by the previous part we deduce that there exists an edge joining a vertex
in Vi (call it z) to a vertex vg in Vo = V(P), where 1 < k < £+ 1. Let P = vjv2...v4,1 and

e = {x,v}. Since the two ends of P are adjacent i.e. {vj,ve11} € E, we can define another
path P’ = v P, | 4, 1V04+1v1 P, 0, ,)- Notice that P’ is a path in G of length £ + 1, which is a
contradiction. Hence, our supposition is incorrect. Thus, V' = V(P).





