

Theoretical Computer Science - Bridging Course Sample Solution Exercise Sheet 6

Due: Tuesday, 3rd of December 2024, 12:00 pm

Exercise 1: Decidable Problems

(2+2+2+2 Points)

Show that the following languages are decidable.

- 1. $A = \{\langle R, S \rangle \mid R \text{ and } S \text{ are regular expressions and } L(R) \subseteq L(S) \}.$
- 2. Let $B = \{\langle G \rangle \mid G \text{ is a CFG over } \{0,1\} \text{ and } 1^* \cap L(G) \neq \emptyset\}$. Use the fact that a language $C \cap R$ is context free for some context free language C and regular language R.
- 3. Consider a decidable language L. Show that its complement \bar{L} is also decidable.
- 4. Show that there is a language that is Turing-Recognizable but not Turing-Decidable using the result above.

Sample Solution

- 1. Let T be the Turing Machine deciding the language $\{\langle D \rangle \mid D \text{ is a DFA with } L(D) = \emptyset\}$ (known from the lecture). We have $L(R) \subseteq L(S) \Leftrightarrow L(R) \setminus L(S) = \emptyset$. Thus we construct a decider for A in the following way.
 - A'= "On input $\langle R,S\rangle$ where R,S are regular expression:
 - 1. Convert R and S into equivalent DFAs (like in the lecture)
 - 2. Construct a DFA D for the regular language $L(R) \setminus L(S) = \overline{L(R)} \cup L(S)$
 - 3. Run T on input $\langle D \rangle$. Accept iff T accepts."
- 2. From the fact, we deduce that $1^* \cap L(G)$ is context free. We construct a TM that decides on B as follows.
 - B' = "On input $\langle G \rangle$, where G is a context free grammar:
 - 1. Construct a CFG C such that $L(C) = 1^* \cap L(G)$
 - 2. Test whether $L(C) = \phi$ using the decider R for E_{CFG} (cf. lecture).
 - 3. If R accepts, reject; if R rejects, accept."
- 3. As the language L is decidable, it has a Turing Machine M that halts on every input string w. So, it either accepts and halts, or rejects and halts. Using this, we can construct a TM M' that does the following:
 - 1. Run M on input w.
 - 2. If M accepts, M' rejects.
 - 3. If M rejects, M accepts.

This TM M' not only recognizes the language L, but also is decidable, as it halts on every input.

4. Suppose there is a language L that is Turing-Recognizable. Then its complement L is not Turing-Recognizable, and this means this language is also not Turing-Decidable, i.e. Undecidable. That derives the fact that this language L is also undecidable.