

Theoretical Computer Science - Bridging Course Sample Solution Exercise Sheet 7

Due: Tuesday, 10th of December 2024, 12:00 pm

Exercise 1: Undecidable or Not Turing recongnizable Problems $(4+4$ Points)

1. Show that $EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are Turing Machines and } L(M_1) = L(M_2) \}$ is undecidable.

Hint: You may use that $E_{TM} = \{ \langle M \rangle \mid M \text{ is a Turing Machine and } L(M) = \emptyset \}$ is undecidable.

2. Fix an enumeration of all Turing machines (that have input alphabet Σ): $\langle M_1 \rangle$, $\langle M_2 \rangle$, $\langle M_3 \rangle$, ... Fix also an enumeration of all words over $\Sigma: w_1, w_2, w_3, \ldots$.

Prove that language $L = \{w \in \Sigma^* \mid w = w_i, \text{ for some } i, \text{ and } M_i \text{ does not accept } w_i\}$ is not Turing recognizable.

Hint: Try to find a contradiction to the existence of a Turing machine that recognizes L.

Sample Solution

- 1. Assume we had a TM R that decides EQ_{TM} . We construct a decider F for E_{TM} in the following and this will lead to a contradiction. $F=$ "On input $\langle M \rangle$ where M is a TM:
	-
	- Construct a TM B that rejects all inputs.
	- Run R on $\langle M, B \rangle$. Accept iff R accepts."
- 2. Assume M is a turing machine recognizing L. Then there is an i such that $M = M_i$.

Assume M accepts w_i . One the one hand this implies $w_i \in L$ (as M recognizes L), on the other hand it implies $w_i \notin L$ (by the definition of L), leading to a contradiction.

Now assume M does not accept w_i . One the one hand this implies $w_i \notin L$ (as M recognizes L), on the other hand it implies $w_i \in L$ (by the definition of L), leading to a contradiction.

So in either case we get a contradiciton. Therefore such a TM can not exist.

Exercise 2: The Halting Problem Revisited $(4+4$ Points)

Show that both the halting problem and its special version are both undecidable.

1. The halting problem is defined as

 $H = \{ \langle M, w \rangle \mid \langle M \rangle \text{ encodes a TM and } M \text{ halts on string } w \}.$

Hint: Assume H is decidable and try to reach a contradiction by showing that some known undecidable problem (cf. from the lecture) is decidable.

2. The special halting problem is defined as

 $H_s = \{ \langle M \rangle | \langle M \rangle$ encodes a TM and M halts on $\langle M \rangle$.

Hint: Assume that M is a TM which decides H_s and then construct a TM which halts iff M does not halt. Use this construction to find a contradiction.

Sample Solution

1. Assume H is decidable, hence there exists TM R that decides on it. We know from the lecture that the A_{TM} problem is undecidable. We reach a contradiction by constructing a TM S that decides on A_{TM} as follows. $S=$ " On input $\langle M, w \rangle$, where M is a TM and w is a string: 1. Run TM R on $\langle M, w \rangle$, if R rejects, reject. 2. If R accepts, simulate M on w until it halts. If M accepts, accept; if M rejects, reject."

2. Assume that H_s is decidable. Then there is a TM M which decides it. Now let us define a TM \tilde{M} as follows. TM \tilde{M} on input w uses M to test whether $w \in H_s$. If $w \in H_s$ it enters a non terminating loop, otherwise it accepts w. We now apply \tilde{M} on input $\langle \tilde{M} \rangle$ and construct a contradiction.

 $\langle \tilde{M} \rangle \notin H_s$: Then M rejects $\langle \tilde{M} \rangle$. Thus \tilde{M} accepts $\langle \tilde{M} \rangle$ by the definition of \tilde{M} . Thus, $\langle \tilde{M} \rangle \in H_s$, a contradiction.

 $\langle \tilde{M} \rangle \in H_s$: Then M accepts $\langle \tilde{M} \rangle$, i.e., \tilde{M} enters a non terminating loop on $\langle \tilde{M} \rangle$ and does not halt on $\langle \tilde{M} \rangle$ which means that $\langle \tilde{M} \rangle \notin H_s$, a contradiction.

$$
\langle \tilde{M} \rangle \in H_s \Leftrightarrow \langle \tilde{M} \rangle \notin H_s
$$

Exercise 3: $\mathcal{O}\text{-Notation Formal Proofs}$ (1+2+3 Points)

Roughly speaking, the set $\mathcal{O}(f)$ contains all functions that are not growing faster than the function f when additive or multiplicative constants are neglected. Formally:

$$
g \in \mathcal{O}(f) \Longleftrightarrow \exists c > 0, \exists M \in \mathbb{N}, \forall n \ge M : g(n) \le c \cdot f(n)
$$

For the following pairs of functions, state whether $f \in \mathcal{O}(g)$ or $g \in \mathcal{O}(f)$ or both. Proof your claims (you do not have to prove a negative result \notin , though).

(a)
$$
f(n) = 100n
$$
, $g(n) = 0.1 \cdot n^2$
\n(b) $f(n) = \sqrt[3]{n^2}$, $g(n) = \sqrt{n}$

(c) $f(n) = \log_2(2^n \cdot n^3)$

Hint: You may use that $\log_2 n \leq n$ for all $n \in \mathbb{N}$.

Sample Solution

(a) It is $100n \in \mathcal{O}(0.1n^2)$. To show that we require constants c, M such that $100n \leq c \cdot 0.1n^2$ for all $n \geq M$. Obviously this is the case for $c = 1000$ and $M = 1$.

(b) We have $g(n) \in O(f(n))$. Let $c := 1$ and $M := 1$. Then we have

⇔

$$
g(n) \le c \cdot f(n) \tag{1}
$$

$$
\sqrt{n} \le n^{2/3} \tag{2}
$$

$$
\Leftrightarrow \qquad \qquad 1 \le n^{1/6} \tag{3}
$$

$$
\Leftrightarrow \qquad \qquad 1 \leq n \tag{4}
$$

The last inequality is satisfied because $n \geq M = 1$.

(c) $f(n) \in O(g(n))$ holds. We give $c > 0$ and $M \in \mathbb{N}$ such that for all $n \geq M : \log_2(2^n \cdot n^3) \leq c \cdot n$. Indeed,

$$
\log_2(2^n \cdot n^3)
$$

=
$$
\log_2(2^n) + \log_2(n^3)
$$

=
$$
n + 3 \cdot \log_2(n)
$$

$$
\leq n + 3n = 4n.
$$

Thus $\log_2(2^n \cdot n^3) \le c \cdot 3n$ for $n \ge M := 1$ and $c := 4/3$.

We also have that $g(n) \in O(f(n))$ holds because

$$
g(n) = 3n \le 3(n+3 \cdot \log_2(n)) = 3(\log_2(2^n \cdot n^3)) = 3 \cdot f(n).
$$

Thus with $c = 3$ and for $n \geq M := 1$ we have $g(n) \leq cf(n)$.

Exercise 4: Sort Functions by Asymptotic Growth (7 Points)

Give a sequence of the following functions sorted by asymptotic growth, i.e., for consecutive functions g, f in your sequence, it should hold $g \in \mathcal{O}(f)$. Write " $g \cong f$ " if $f \in \mathcal{O}(g)$ and $g \in \mathcal{O}(f)$.

Sample Solution

For clarification, we write $g \lesssim f$ if $g \in \mathcal{O}(f)$, but not $f \in \mathcal{O}(g)$.

$$
\begin{array}{ccc}\n\searrow & \sqrt{\log_2 n} & \lesssim & \log_2(\sqrt{n}) \cong & \log_{10} n & \cong & \log_2(n^2) \\
\lesssim & (\log_2 n)^2 & \lesssim & \sqrt{n} & \lesssim & 10^{100} n & \lesssim & n \log_2 n \\
\cong & \log_2(n!) & \lesssim & n^2 & \lesssim & n^{100} & \lesssim & 2^n \\
\lesssim & n \cdot 2^n & \lesssim & 3^n & \lesssim & n! & \lesssim & n^n\n\end{array}
$$