
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
Z. Parsaeian

Theoretical Computer Science - Bridging Course

Sample Solution Exercise Sheet 7
Due: Tuesday, 10th of December 2024, 12:00 pm

Exercise 1: Undecidable or Not Turing recongnizable Problems (4+4 Points)

1. Show that EQTM = {⟨M1,M2⟩ | M1,M2 are Turing Machines and L(M1) = L(M2)} is undeci-
dable.

Hint: You may use that ETM = {⟨M⟩ | M is a Turing Machine and L(M) = ∅} is undecidable.

2. Fix an enumeration of all Turing machines (that have input alphabet Σ): ⟨M1⟩, ⟨M2⟩, ⟨M3⟩,
Fix also an enumeration of all words over Σ: w1, w2, w3,

Prove that language L = {w ∈ Σ∗ | w = wi, for some i, and Mi does not accept wi} is not
Turing recognizable.

Hint: Try to find a contradiction to the existence of a Turing machine that recognizes L.

Sample Solution

1. Assume we had a TM R that decides EQTM . We construct a decider F for ETM in the following
and this will lead to a contradiction.
F= “On input ⟨M⟩ where M is a TM:

• Construct a TM B that rejects all inputs.

• Run R on ⟨M,B⟩. Accept iff R accepts.”

2. Assume M is a turing machine recognizing L. Then there is an i such that M = Mi.

Assume M accepts wi. One the one hand this implies wi ∈ L (as M recognizes L), on the other
hand it implies wi /∈ L (by the definition of L), leading to a contradiction.

Now assume M does not accept wi. One the one hand this implies wi /∈ L (as M recognizes L),
on the other hand it implies wi ∈ L (by the definition of L), leading to a contradiction.

So in either case we get a contradiciton. Therefore such a TM can not exist.

Exercise 2: The Halting Problem Revisited (4+4 Points)

Show that both the halting problem and its special version are both undecidable.

1. The halting problem is defined as

H = {⟨M,w⟩ | ⟨M⟩ encodes a TM and M halts on string w}.

Hint: Assume H is decidable and try to reach a contradiction by showing that some known
undecidable problem (cf. from the lecture) is decidable.

2. The special halting problem is defined as

Hs = {⟨M⟩ | ⟨M⟩ encodes a TM and M halts on ⟨M⟩}.

Hint: Assume that M is a TM which decides Hs and then construct a TM which halts iff M
does not halt. Use this construction to find a contradiction.

Sample Solution

1. Assume H is decidable, hence there exists TM R that decides on it.
We know from the lecture that the ATM problem is undecidable.
We reach a contradiction by constructing a TM S that decides on ATM as follows.
S= “ On input < M,w >, where M is a TM and w is a string:
1. Run TM R on < M,w >, if R rejects, reject.
2. If R accepts, simulate M on w until it halts. If M accepts, accept; if M rejects, reject.”

2. Assume that Hs is decidable. Then there is a TM M which decides it. Now let us define a
TM M̃ as follows. TM M̃ on input w uses M to test whether w ∈ Hs. If w ∈ Hs it enters a
non terminating loop, otherwise it accepts w. We now apply M̃ on input ⟨M̃⟩ and construct a
contradiction.

⟨M̃⟩ /∈ Hs: Then M rejects ⟨M̃⟩. Thus M̃ accepts ⟨M̃⟩ by the definition of M̃ . Thus, ⟨M̃⟩ ∈ Hs,
a contradiction.

⟨M̃⟩ ∈ Hs: Then M accepts ⟨M̃⟩, i.e., M̃ enters a non terminating loop on ⟨M̃⟩ and does not
halt on ⟨M̃⟩ which means that ⟨M̃⟩ /∈ Hs, a contradiction.

⟨M̃⟩ ∈ Hs ⇔ ⟨M̃⟩ /∈ Hs

Exercise 3: O-Notation Formal Proofs (1+2+3 Points)

Roughly speaking, the set O(f) contains all functions that are not growing faster than the function f
when additive or multiplicative constants are neglected. Formally:

g ∈ O(f) ⇐⇒ ∃c > 0,∃M ∈ N, ∀n ≥ M : g(n) ≤ c · f(n)

For the following pairs of functions, state whether f ∈ O(g) or g ∈ O(f) or both. Proof your claims
(you do not have to prove a negative result /∈, though).

(a) f(n) = 100n, g(n) = 0.1 · n2

(b) f(n) =
3
√
n2, g(n) =

√
n

(c) f(n) = log2(2
n · n3), g(n) = 3n Hint: You may use that log2 n ≤ n for all n ∈ N.

Sample Solution

(a) It is 100n ∈ O(0.1n2). To show that we require constants c,M such that 100n ≤ c · 0.1n2 for all
n ≥ M . Obviously this is the case for c = 1000 and M = 1.

(b) We have g(n) ∈ O(f(n)). Let c := 1 and M := 1. Then we have

g(n) ≤ c · f(n) (1)

⇔
√
n ≤ n2/3 (2)

⇔ 1 ≤ n1/6 (3)

⇔ 1 ≤ n (4)

The last inequality is satisfied because n ≥ M = 1.

(c) f(n) ∈ O(g(n)) holds. We give c > 0 and M ∈ N such that for all n ≥ M : log2(2
n · n3) ≤ c · n.

Indeed,

log2(2
n · n3)

= log2(2
n) + log2(n

3)

= n+ 3 · log2(n)
≤ n+ 3n = 4n.

Thus log2(2
n · n3) ≤ c · 3n for n ≥ M := 1 and c := 4/3.

We also have that g(n) ∈ O(f(n)) holds because

g(n) = 3n ≤ 3(n+ 3 · log2(n)) = 3(log2(2
n · n3)) = 3 · f(n).

Thus with c = 3 and for n ≥ M := 1 we have g(n) ≤ cf(n).

Exercise 4: Sort Functions by Asymptotic Growth (7 Points)

Give a sequence of the following functions sorted by asymptotic growth, i.e., for consecutive functions
g, f in your sequence, it should hold g ∈ O(f). Write “g ∼= f” if f ∈ O(g) and g ∈ O(f).

log2(n!)
√
n 2n log2(n

2)
3n n100 log2(

√
n) (log2 n)

2

log10 n 10100 · n n! n log2 n

n · 2n nn
√

log2 n n2

Sample Solution

For clarification, we write g ≲ f if g ∈ O(f), but not f ∈ O(g).√
log2 n ≲ log2(

√
n) ∼= log10 n

∼= log2(n
2)

≲ (log2 n)
2 ≲

√
n ≲ 10100n ≲ n log2 n

∼= log2(n!) ≲ n2 ≲ n100 ≲ 2n

≲ n · 2n ≲ 3n ≲ n! ≲ nn

