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Exercise 1: Propositional Logic: Basic Terms (1+1+1+1 Points)

Let Σ := {p, q, r} be a set of atoms. An interpretation I : Σ → {T, F} maps every atom to either true
or false. Inductively, an interpretation I can be extended to composite formulae φ over Σ (cf. lecture).
We write I |= φ if φ evaluates to T (true) under I. In case I |= φ, I is called a model for φ.

For each of the following formulae, give all interpretations which are models. Make a truth table
and/or use logical equivalencies to find all models (document your steps). Which of these formulae are
satisfiable, which are unsatisfiable and which are tautologies?

(a) φ1 = (p ∧ ¬q) ∨ (¬p ∨ q)

(b) φ2 = (¬p ∧ (¬p ∨ q)) ↔ (p ∨ ¬q)

(c) φ3 = (p ∧ ¬q) → ¬(p ∧ q)

(d) φ4 = (p ∧ q) → (p ∨ r)

Remark: a→ b :≡ ¬a ∨ b, a↔ b :≡ (a→ b) ∧ (b→ a), a ̸→ b :≡ ¬(a→ b).

Sample Solution

(a) See Table 1. The result shows that φ1 is a tautology.

(b) See Table 2. The result shows that φ2 is satisfiable.

(c) φ3 ≡ ¬(p ∧ ¬q) ∨ (¬p ∨ ¬q) ≡ (¬p ∨ q) ∨ (¬p ∨ ¬q) ≡ ¬p ∨ q ∨ ¬p ∨ ¬q ≡ ¬p ∨ ¬q ∨ q which is a
tautology as either q or ¬q holds.

(d) See Table 3. The result shows that φ4 is a tautology.

Exercise 2: CNF and DNF (2+1 Points)

(a) Convert φ1 := (p→ q) → (¬r ∧ q) into Conjunctive Normal Form (CNF).

(b) Convert φ2 := ¬((¬p→ ¬q) ∧ ¬r) into Disjunctive Normal Form (DNF).

Remark: Use the known logical equivalencies given in the lecture slides to do the necessary transfor-
mations. State which equivalency you are using in each step.



model p q p ∧ ¬q ¬p ∨ q φ1

✓ 0 0 0 1 1
✓ 0 1 0 1 1
✓ 1 0 1 1 1
✓ 1 1 0 1 1

Tabelle 1: Truthtable for Exercise 1 (a).

model p q ¬p ∨ q ¬p ∧ (¬p ∨ q) p ∨ ¬q φ2

✓ 0 0 1 1 1 1
✗ 0 1 1 1 0 0
✗ 1 0 0 0 1 0
✗ 1 1 1 0 1 0

Tabelle 2: Truthtable for Exercise 1 (b).

model p q r p ∧ q p ∨ r φ4

✓ 0 0 0 0 0 1
✓ 0 0 1 0 1 1
✓ 0 1 0 0 0 1
✓ 0 1 1 0 1 1
✓ 1 0 0 0 1 1
✓ 1 0 1 0 1 1
✓ 1 1 0 1 1 1
✓ 1 1 1 1 1 1

Tabelle 3: Truthtable for Exercise 1 (d).



Sample Solution

(a)

(p→ q) → (¬r ∧ q)
≡ ¬(¬p ∨ q) ∨ (¬r ∧ q) Definition of ’→’

≡ (p ∧ ¬q) ∨ (¬r ∧ q) De Morgan

≡
(
(p ∧ ¬q) ∨ ¬r

)
∧
(
(p ∧ ¬q) ∨ q

)
Distribution

≡
(
(p ∨ ¬r) ∧ (¬q ∨ ¬r)

)
∧
(
(p ∨ q) ∧ (¬q ∨ q)

)
Distribution

≡
(
(p ∨ ¬r) ∧ (¬q ∨ ¬r)

)
∧
(
(p ∨ q) ∧ 1

)
Complementation

≡
(
(p ∨ ¬r) ∧ (¬q ∨ ¬r)

)
∧ (p ∨ q) Identity

≡ (p ∨ ¬r) ∧ (¬q ∨ ¬r) ∧ (p ∨ q) Associativity

(b)

¬((¬p→ ¬q) ∧ ¬r)
≡ ¬((p ∨ ¬q) ∧ ¬r) Definition of ’→’

≡ ¬(p ∨ ¬q) ∨ r De Morgan

≡ (¬p ∧ q) ∨ r De Morgan

Exercise 3: Logical Entailment (2+2 Points)

A knowledge base KB is a set of formulae over a given set of atoms Σ. An interpretation I of Σ is
called a model of KB, if it is a model for all formulae in KB. A knowledge base KB entails a formula
φ (we write KB |= φ), if all models of KB are also models of φ.

Let KB := {p ∨ q,¬r ∨ p}. Show or disprove that KB logically entails the following formulae.

(a) φ1 := (p ∧ q) ∨ ¬(¬r ∨ p)

(b) φ2 := (q ↔ r) → p

Sample Solution

(a) KB does not entail φ1. Consider the interpretation I : p 7→ 1, q 7→ 0, r 7→ 0. Interpretation I is a
model for KB but not for φ1.

(b) Table 4 shows that every model of KB is also a model of φ2, hence KB |= φ2.

Exercise 4: Inference Rules and Calculi (2+2 Points)

Let φ1, . . . , φn, ψ be propositional formulae. An inference rule

φ1, . . . , φn

ψ

means that if φ1, . . . , φn are ’considered true’, then ψ is ’considered true’ as well (n = 0 is the special
case of an axiom). A (propositional) calculus C is described by a set of inference rules.
Given a formula ψ and knowledge base KB := {φ1, . . . , φn} (where φ1, . . . , φn are formulae) we write
KB ⊢C ψ if ψ can be derived from KB by starting from a subset of KB and repeatedly applying
inference rules from the calculus C to ’generate’ new formulae until ψ is obtained.



model of KB p q r p ∨ q ¬r ∨ p q ↔ r φ2 model of φ2

✗ 0 0 0 0 0 1 0 ✗

✗ 0 0 1 0 0 0 1 ✓

✓ 0 1 0 1 1 0 1 ✓

✗ 0 1 1 1 0 1 0 ✗

✓ 1 0 0 1 1 1 1 ✓

✓ 1 0 1 1 1 0 1 ✓

✓ 1 1 0 1 1 0 1 ✓

✓ 1 1 1 1 1 1 1 ✓

Tabelle 4: Truthtable for Exercise 3 (b).

Consider the following two calculi, defined by their inference rules (φ,ψ, χ are arbitrary formulae).

C1 :
φ→ ψ,ψ → χ

φ→ χ
,
¬φ→ ψ

¬ψ → φ
,

φ↔ ψ

φ→ ψ,ψ → φ

C2 :
φ,φ→ ψ

ψ
,
φ ∧ ψ
φ,ψ

,
(φ ∧ ψ) → χ

φ→ (ψ → χ)

Using the respective calculus, show the following derivations (document your steps).

(a) {p↔ ¬r,¬q → r} ⊢C1 p→ q

(b) {p ∧ q, p→ r, (q ∧ r) → s} ⊢C2 s

Remark: Inferences of a given calculus are purely syntactical, i.e. rules only apply in their specific form
(much like a grammar) and no other logical transformations not given in the calculus are allowed.

Sample Solution

(a) We use C1 to derive new formulae until we obtain the desired one.

¬q → r
2nd rule
⊢C1 ¬r → q

p↔ ¬r
3rd rule
⊢C1 p→ ¬r,¬r → p

p→ ¬r,¬r → q
1st rule
⊢C1 p→ q

(b) We use C2 to derive new formulae until we obtain the desired one.

p ∧ q
2nd rule
⊢C2 p, q

p, p→ r
1st rule
⊢C2 r

(q ∧ r) → s
3rd rule
⊢C2 q → (r → s)

q, q → (r → s)
1st rule
⊢C2 r → s

r, r → s
1st rule
⊢C2 s

Exercise 5: Resolution Calculus (1+1+3 Points)

Due to the Contradiction Theorem (cf. lecture) for every knowledge base KB and formula φ it holds

KB |= φ ⇐⇒ KB ∪ {¬φ} |= ⊥.



Remark: ⊥ is a formula that is unsatisfiable.

In order to show that KB entails φ, we show that KB ∪ {¬φ} entails a contradiction. A calculus C
is called refutation-complete if for every knowledge base KB

KB |= ⊥ =⇒ KB ⊢C ⊥.

Hence, given a refutation-complete calculus C it suffices to show KB ∪{¬φ} ⊢C ⊥ to prove KB |= φ.

The Resolution Calculus R is a formal way to do a prove by contradiction. It is correct and refutation-
complete1 for knowledge bases that are given in Conjunctive Normal Form (CNF). A knowledge base
KB is in CNF if it is of the form KB = {C1, . . . , Cn} where its clauses Ci = {Li,1, . . . , Li,mi} each
consist of mi literals Li,j .
Remark: KB represents the formula C1 ∧ . . . ∧ Cn with Ci = Li,1 ∨ . . . ∨ Li,mi.

The Resolution Calculus has only one inference rule, the resolution rule:

R :
C1 ∪ {L}, C2 ∪ {¬L}

C1 ∪ C2
.

Remark: L is a literal and C1 ∪ {L}, C2 ∪ {¬L} are clauses in KB (C1, C2 may be empty). To show
KB ⊢R ⊥, you need to apply the resolution rule, until you obtain two conflicting one-literal clauses L
and ¬L. These entail the empty clause (defined as □), i.e. a contradiction ( {L}, {¬L} ⊢R ⊥ ).

(a) We want to show {p∧ q, p→ r, (q∧ r) → u} |= u. First convert this problem instance into a form
that can be solved via resolution as described above. Document your steps.

(b) Now, use resolution to show {p ∧ q, p→ r, (q ∧ r) → u} |= u.

(c) Consider the sentence “Heads, I win”. “Tails, you lose”. Design a propositionalKB that represents
these sentences (create the propositions and rules required). Then use propositional resolution to
prove that I always win.

Sample Solution

(a) We transform {p ∧ q, p → r, (q ∧ r) → u} |= u into the form KB |= ⊥ where KB is in CNF.
The given entailment is equivalent to {p∧ q, p→ r, (q ∧ r) → u,¬u} |= ⊥ using the Contradiction
Theorem, which we described above. Now we transform the knowledge base into CNF using
DeMorgan’s rule and distribution among others.

{p ∧ q, p→ r, (q ∧ r) → u,¬u}
≡ {p, q,¬p ∨ r,¬(q ∧ r) ∨ u,¬u}
≡ {p, q,¬p ∨ r,¬q ∨ ¬r ∨ u,¬u}
≡ {{p}, {q}, {¬p, r}, {¬q,¬r, u}, {¬u}}

(b) Now we can use the Resolution calculus R to derive a contradiction (the empty clause □).

{¬p, r}, {p} ⊢R {r}
{¬q,¬r, u}, {r} ⊢R {¬q, u}
{¬q, u}, {¬u} ⊢R {¬q}

{¬q}, {q} ⊢R □

We have a contradiction. Thus, the above entailment is true.

1Complete calculi are impractical, since they have too many inference rules. More inference rules make automated
proving with a computer significantly more complex. The Resolution Calculus is an appropriate technique to avoid this
additional complexity, since it has only one inference rule.



(c) 1) Define the atomic formulae from text above: H : heads T : tails I : I win Y : You win.

2) Use these to state the rules: H → I and T → ¬Y .

3) We now must specify implicit rules. The formulas above do not yet know that heads and tails
are mutually exclusive: H⊗T and I⊗Y (A⊗B := (A∨B)∧ (¬A∨¬B) is the XOR operator).

4) Convert to CNF:

H → I and T → ¬Y and H ⊗ T and I ⊗ Y

≡ ¬(H ∨ I) ∧ (¬T ∨ ¬Y ) ∧ (H ∨ T ) ∧ (¬H ∨ ¬T ) ∧ (I ∨ Y ) ∧ (¬I ∨ ¬Y )

≡ {{¬H, I}, {¬T,¬Y }, {H,T}, {¬H,¬T}, {I, Y }, {¬I,¬Y }}

5) We want to prove I, hence we add the literal {¬I} to the knowledge base:

{{¬H, I}, {¬T,¬Y }, {H,T}, {¬H,¬T}, {I, Y }, {¬I,¬Y }, {¬I}}.

Now we start resolving clauses:

{¬T,¬Y }, {H,T} ⊢R {H,¬Y }
{H,¬Y }, {¬H, I} ⊢R {I,¬Y }

{¬I}, {I,¬Y } ⊢R {¬Y }
{¬Y }, {I, Y } ⊢R {I}

{I}, {¬I} ⊢R □

Consequently, we have a contradiction. Thus, I is true.


