University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn

Algorithms and Data Structures Exam

8. August 2024, 14:00 -17:00

N A,
Matriculation INO.: o

SIgMAtUTE:

Do not open or turn until told so by the supervisor!

e Write your name and matriculation number on this page and sign the document.

e Your signature confirms that you have answered all exam questions yourself without any help, and that
you have notified exam supervision of any interference.

e You are allowed to use a summary of five handwritten, single-sided A4 pages.

e No electronic devices are allowed.

e Write legibly and only use a pen (ink or ball point). Do not use red! Do not use a pencil!
e You may write your answers in English or German language.

e Only one solution per task is considered! Make sure to strike out alternative solutions, otherwise the
one yielding the minimal number of points is considered.

e Detailed steps might help you to get more points in case your final result is incorrect.

e The keywords Show..., Prove..., Explain... or Argue... indicate that you need to prove or explain
your answer carefully and in sufficient detail.

e The keywords Give..., State... or Describe... indicate that you need to provide an answer solving the
task at hand but without proof or deep explanation (except when stated otherwise).

e You may use information given in a Hint without further explanation.
e Read each task thoroughly and make sure you understand what is expected from you.

e Raise your hand if you have a question regarding the formulation of a task or if you need additional
sheets of paper.

e A total of 45 points is sufficient to pass and a total of 90 points is sufficient for the best grade.
e Write your name on all sheets!

Task 1 2 3 4 5 6 7 Total
Maximum 28 15 12 15 20 15 15 120
Points

Task 1: Short Questions (28 Points)

(a)

(b)

Let A=[n,1,2,...,n — 1] be an array of n elements that is sorted except for the first element.
What is the asymptotic runtime of Insertion Sort to sort A7 What is the runtime of Merge Sort
to sort A? Justify your answers. (8 Points)

Insert the following sequence of keys into an initially empty binary search tree in the given order:
13, 5, 2, 18, 10, 11, 3, 7, 6, 4. Draw the resulting search tree. What does the search tree look
like after executing delete(5)? Draw this tree as well. (5 Points)

For a connected weighted graph G = (V, E,w), we define a Maximum Spanning Tree as a
spanning tree 7" such that its weight w(T') = > . w(e) is maximized, i.e., for any other spanning
tree 7", we have w(T') > w(T”). Provide an efficient algorithm to compute a Maximum Spanning
Tree. Prove that the algorithm is correct and analyze its runtime. (5 Points)

Consider a weighted graph G = (V, E,w) with integer, positive edge weights (w : E — N). We
define two new weight functions:

wi(e) :==w(e) +1
1
wa(e) :=w(e) + v

Prove or disprove the following statements:

(i
(i

(iii

Every shortest path in G is also a shortest path in G' = (V, E, w). (2.5 Points)
Every shortest path in G’ = (V, E,w) is also a shortest path in G. (2.5 Points)
Every shortest path in G is also a shortest path in G” = (V, E, wy). (2.5 Points)
Every shortest path in G” = (V, E, ws) is also a shortest path in G. (2.5 Points)

~— — ~— —

(iv

To execute the Knuth-Morris-Pratt algorithm from the lecture, an array .S must be precomputed.
Provide this array S for the pattern P =CCDCCCD. (5 Points)

Solution Task 1

Task 2: Landau-Notation (15 Points)

(a) Sort the following functions in ascending order according to Landau notation, i.e., for any two
consecutive functions f, g in this order, we have f(n) € O(g(n)). No proofs or justifications are

required. (5 Points)
e a(n) = 3("*) — 3p13
'Y b(n) 5Og5 10g5())
e c(n) =n+|[logs(57")|
o d(n) = *Vnt
o e(n) = (logy(n))**”

(b) Prove or disprove using the definition of Landau notation:

aVviee2n ¢ 0(100/n)
(5 Points)
(c) Prove or disprove using the definition of Landau notation:

logy(n!) € ©(nlogyn)
(5 Points)

Solution Task 2

Task 3: Find Nearby Nodes (12 Points)

The rural areas are supposed to get better access to public transport. To achieve this a new nerby-
cities ticket is introduced. Using this ticket one is allowed to travel from ones town to all adjacent
towns. The owners of tickets want a tool that lets them determine to which cities they are allowed to
travel using their ticket. To determine the towns that can be reached using the ticket, we care only
about the town of origin v and the price-level d of the ticket. The higher the price-level, the farther
away towns can be reached. We model the connections between towns as a graph. Give an algorithm
that determines all nodes at distance at most d from some starting node v.

You notice that no town has more than 10 neighboring towns. You want to abuse this fact to make
your algorithm as fast as possible.

Formally: Given a weighted graph G = (V, E,w) where all edge weights are 1 and each node has at
most 10 neighbors, design an efficient algorithm to find all nodes within distance d from a given node
v. Justify why the algorithm is correct and analyze its runtime in terms of n = |V/| and d.

In the example above, starting from node vs and with distance d = 2, the nodes {v7, v3, va, v4,v6} can
be reached.

Argue why your algorithm is correct and analyze the runningtime as a function of the parameters
n = |V| and d.

Consider the following questions and answer them explicitly:

e In what form must the graph be given to achieve the claimed runtime?
e Where in your analysis is the fact that each node has at most 10 neighbors used?

e For which values of d does your algorithm run in time o(n)?
Note that this already implies that you are not even allowed to initialise an array of size n.

Solution Task 3

Task 4: Heaps with small Priorities (15 Points)

A priority queue stores elements with priorities between 1 and C.

(a) Design a data structure supporting insert in O(1) time and delete-min in O(C) time, using at
most O(n + C) space. Prove that your data structure satisfies these constraints. (10 Points)

(b) Modify your data structure so that delete-min runs in O(v/C) time while preserving the con-
straints from (a). Prove that your data structure satisfies these constraints. (5 Points)

Solution Task 4

Task 5: Swear Word Filter (20 Points)

You are working on a chat platform for schools. There have been repeated complaints because students
are using offensive language. Therefore, a swear word filter has been added that censors all words
from a list of swear words S.

Of course, it didn’t take long for the students to find a workaround. They started replacing individual
letters with numbers, or for example, replacing the letter ’d’ with t’. This way, the words remain
recognizable, but the filter doesn’t catch them.

We now aim to decide whether a given word w is a disguised swear word or not.

Formal problem: Given a set of strings .S and a word to check w, determine whether w is a modified
version of a swear word. That is, check whether replacing one (or zero) letters in w would result in a
word from the set S.

Example: Let S = {fudge,bollocks,frick}
Then the word "meanie" is not a swear word, while "futge" and "bOllocks" are classified as dis-
guised swear words.

We define the following values for our analysis:
e |S|: the number of words in S
e W: the length of the longest word (i.e., len(w) < W and Vs € S : len(s) < W)

e |X|: the size of the alphabet X, i.e., the set of all possible characters (e.g., a, ..., z, A, ..., Z, 0,
s 90700 &)

We want to decide for many different words w whether they need to be censored. Therefore, we want
to first build a data structure and then use it to quickly compute the answer for any w.

a) Provide a data structure that helps process a word w efficiently. It must be possible to initialize
the data structure in time O(W - |S|). Show how it can be used to decide, in time O(W? - |%|),
whether a given word w should be censored. (7 Points)

Hint: Remember that many operations on strings of length W take O(W) time. In particular, hashing
a string of length W takes O(W) time.

Now assume that no word is longer than 20 characters, i.e., W < 20, and that chat messages use
Unicode characters (so |X| ~ 149,813). Therefore, we want an approach that does not depend on the
alphabet size |X|.

b) Provide a data structure that helps process a word w even more efficiently. It must be possible
to initialize the data structure in time O(W?2 - |S|). Show how it can be used to decide, in time

O(W?), whether w should be censored. (18 Points)

Hint: Try to cleverly reduce the number of different words you need to look up in your data structure.

10

Solution Task 5

11

Task 6: MST in Partitioned Graphs (15 Points)

In the lecture, we saw that a Minimum Spanning Tree (MST) can be computed in time O(mlogn).

We now want to design a more efficient algorithm for a specific class of graphs.

Our graphs have the following structure: The graph G(V, E, w) is partitioned into k clusters Pi, P, ..., P, C
V', such that Ule P; =V and P, N P; = { for all ¢ # j. Each P; forms a clique (i.e., there is an edge
between every pair of nodes within F;), and edges between clusters only exist between P; and Pj14
(i.e., only between consecutive clusters). Furthermore, we know that all edge weights within a cluster

are exactly 1 (u,v € P; = w({u,v}) = 1), and all edge weights between clusters are strictly greater
than 1 (u € Pj,v € Py — w({u,v}) > 1).

w(e) =1 w(e)=1 w(e)=1

Figure 1: An example of a partitioned graph. The nodes in each P; form a clique, and all edge weights
within a clique are exactly 1. Edges between clusters only exist between P; and P;i;, and these
inter-cluster edges have strictly greater weight than 1.

Design an algorithm that computes an MST for such a graph in time O(m). Your algorithm will
receive the graph as an adjacency list, along with the partitioning P, ..., Py (in the correct order).
Justify why your algorithm is correct, and also show that it terminates within the required runtime.

12

Solution Task 6

13

Task 7: Dynamic Programming (15 Points)

An error occurred while saving your text document! All punctuation such as periods, commas, and
spaces have disappeared. A sentence from the document might now look like this:

"ilovewritingexamsitissomuchfun"

We have stored a dictionary of english words as a hash table called dict. Using this, we can check for
any string w whether it is a valid word. If w is in the dictionary, then dict.contains(w) returns
True in constant time.

Describe an efficient algorithm that determines whether a given string s[1, ..., n] of length n characters
can be reconstructed into a meaningful text (i.e., whether it is a concatenation of valid words). Justify
why your algorithm is correct and analyze its runtime.

14

Solution Task 7

15

