University of Freiburg Dept. of Computer Science Prof. Dr. F. Kuhn D. Atalay, S. Faour

Theoretical Computer Science - Bridging Course Exercise Sheet 9

Due: Tuesday, 16th of December 2025, 12:00 pm

Exercise 1: Class \mathcal{NPC}

(3+4+5 Points)

Recall: Let L_1, L_2 be languages (problems) over alphabets Σ_1, Σ_2 . Then $L_1 \leq_p L_2$ (L_1 is polynomially reducible to L_2), iff a function $f: \Sigma_1^* \to \Sigma_2^*$ exists, that can be calculated in polynomial time and

$$\forall s \in \Sigma_1^* : s \in L_1 \iff f(s) \in L_2.$$

Language L is called \mathcal{NP} -hard, if all languages $L' \in \mathcal{NP}$ are polynomially reducible to L, i.e.

$$L \text{ is } \mathcal{NP}\text{-hard} \iff \forall L' \in \mathcal{NP} : L' \leq_p L.$$

The reduction relation $'\leq_p$ ' is transitive $(L_1\leq_p L_2 \text{ and } L_2\leq_p L_3\Rightarrow L_1\leq_p L_3)$. Therefore, in order to show that L is \mathcal{NP} -hard, it suffices to reduce a known \mathcal{NP} -hard problem \tilde{L} to L, i.e. $\tilde{L}\leq_p L$. Finally a language is called \mathcal{NP} -complete $(\Leftrightarrow: L\in\mathcal{NPC})$, if

- 1. $L \in \mathcal{NP}$ and
- 2. L is \mathcal{NP} -hard.

Now, show that the following problems are in \mathcal{NPC}

- (a) INDEPENDENTSET:= $\{\langle G, k \rangle \mid G \text{ has an independent set of size at least } k \}$, where an independent set is a subset of nodes of G such that no two nodes in the subset share an edge in G.
- (b) CLIQUE:= $\{\langle G, k \rangle | G \text{ has a clique of size at least } k \}$.
- (c) HITTINGSET:= $\{\langle \mathcal{U}, S, k \rangle \mid \text{universe } \mathcal{U} \text{ has subset of size at most } k \text{ that } hits \text{ all sets in } S \subseteq 2^{\mathcal{U}} \}.$

(Bonus) DOMINATINGSET := $\{\langle G, k \rangle \mid Graph \ G \ has \ a \ dominating \ set \ of \ size \ at \ most \ k \}$, where a dominating set is a subset of nodes of G such that every node in G is in the subset or has a neighbor in the subset.

Hint: For all four parts, use the fact that VERTEXCOVER := $\{\langle G, k \rangle \mid Graph \ G \ has \ a \ vertex \ cover \ of \ size \ at \ most \ k\} \in \mathcal{NPC}$, where a vertex cover is a subset of nodes of G such that every edge of G is incident to a node in the subset.

For the poly. transformation (\leq_p) you have to describe an algorithm (with poly. run-time!) that transforms:

For part (a), an instance $\langle G, k \rangle$ of VertexCover into an instance $\langle G', k' \rangle$ of Independent set. a vertex cover of size $\leq k$ in G becomes an independent set of G' of size $\geq k'$ vice versa(!)

For part (b), an instance $\langle G, k \rangle$ of VertexCover into an instance $\langle G', k' \rangle$ of Clique s.t. a vertex cover of size $\leq k$ in G becomes a clique of G' of size $\geq k'$ vice versa(!)

For part (c), an instance $\langle G, k \rangle$ of VertexCover into an instance $\langle \mathcal{U}, S, k' \rangle$ of HittingSet, s.t. a vertex cover of size $\leq k$ in G becomes a hitting set of \mathcal{U} of size $\leq k'$ for S and vice versa(!).

For the bonus, transfrom an instance $\langle G, k \rangle$ of VertexCover into an instance $\langle G', k' \rangle$ of DominatingSet s.t. a vertex cover of size $\leq k$ in G becomes a dominating set of G' of size $\leq k'$ vice versa(!) Note that a dominating set is not necessarily a vertex cover $(G = (\{v_1, v_2, v_3, v_4\}, \{\{v_1, v_2\}, \{v_2, v_3\}, \{v_3, v_4\}\}))$ has the dominating set $\{v_1, v_4\}$ which is not a vertex cover). Also a vertex cover is not necessarily a dominating set (consider isolated notes).

Exercise 2: Complexity Classes: Big Picture $(2+3+3 \ Points)$

- (a) Why is $\mathcal{P} \subseteq \mathcal{NP}$?
- (b) Show that $\mathcal{P} \cap \mathcal{NPC} = \emptyset$ if $\mathcal{P} \neq \mathcal{NP}$. Hint: Assume that there exists a $L \in \mathcal{P} \cap \mathcal{NPC}$ and derive a contradiction to $\mathcal{P} \neq \mathcal{NP}$.
- (c) Give a Venn Diagram showing the sets $\mathcal{P}, \mathcal{NP}, \mathcal{NPC}$ for both cases $\mathcal{P} \neq \mathcal{NP}$ and $\mathcal{P} = \mathcal{NP}$. Remark: Use the results of (a) and (b) even if you did not succeed in proving those.