Uni-Logo
Algorithms and Complexity
 


Theoretical Computer Science - Bridging Course
Graduate Course - Summer Term 2016
Fabian Kuhn

 

Exam: Wednesday, 17.8.2016, 10:00 - 12:00, 101-00-010/14

The exam will be 120 minutes. You are allowed to bring any printed or written material to the exam. No electronic equipment will be allowed!

Course description

The aim of the course is to provide basic knowledge of theoretical computer science to computer science M.Sc. students who do not yet have this necessary background (e.g., because of a different major during their undergraduate studies). The course introduces the (mathematical) foundations of theoretical computer science.. We will see what can be computed and how efficiently, as well as what cannot. More specifically, the following topics will be included:

  • Automata
  • Formal languages
  • Formal grammars
  • Turing machines
  • Decidability
  • Complexity theory
  • Logic

Course Format

The course will be based on existing recordings provided by Diego Tipaldi combined with regular weekly meetings with a tutor. In the first week (on Mon, 18.4.2016, 12:15, 101-00-010/14), there will be a meeting where we will briefly discuss the content and the format of the course. More details will also be provided here soon.

Course Material

Slides and Recordings

Topic Slides Recordings
Introduction PDF n/a
Mathematical Preliminaries PDF MP4 (44:30)
DFA, NFA, Regular Languages PDF MP4 (1:14:04)
Regular Languages and closure wrt elementary operations
Regular expressions MP4 (1:37:55)
Non-regular languages MP4 (22:12)
Context Free Grammars I PDF MP4 (1:34:09)
Context Free Grammars II MP4 (42:00)
Pushdown Automata MP4 (1:11:18)
Pumping Lemma for Context Free Grammars MP4 (1:29:51)
Turing Machines I PDF MP4 (52:31)
Turing Machines II MP4 (1:23:03)
Decidability and decidable languages. PDF MP4 (52:54)
Decidability, mathematical backgrounds on cardinality, Cantor's diagonal argument MP4 (1:15:40)
Decidability and the halting problems. MP4 (12:50)
Complexity I PDF MP4 (1:28:51)
Complexity II MP4 (1:34:27)
Complexity III MP4 (1:28:08)
Propositional Logic and basic definitions, CNF/DNF, logical entailment. PDF MP4 (37:11)
Propositional Logic. Deduction/Contraposition/Contradiction Theorems and Derivations. MP4 (1:00:14)
Propositional Logic. Derivations, Soundness and Completeness of calculi. MP4 (53:16)
Propositional Logic. Refutation-completeness and Resolution. MP4 (04:16)
First Order Logic. Derivations. PDF MP4 (46:47)
First Order Logic. Satisfaction, closed formulae and brief overview on Normal Forms. MP4 (1:39:04)


Exercises

Responsible for the exercises are Anisur Rahaman Molla and Chaodong Zheng. Hand in your solutions (electronically preferred) by sending an E-mail to anisur.rahaman@cs.uni-freiburg.de and chaodong@cs.uni-freiburg.de in due date. If you want to submit the solutions in hard copy, drop it in room no 106-00-005 (office of Chaodong Zheng).


Additional Material

Text Books

[sipser] Introduction to the Theory of Computation
Michael Sipser
PWS Publishing, 1997, ISBN 0-534-95097-3
[HMU] Introduction to Automata Theory, Languages, and Computation
John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman
Addison-Wesley, 3rd edition, 2006, ISBN 81-7808-347-7
[mendelson] Introduction to Mathematical Logic
Elliott Mendelson
CRC Press, 6th edition, 2015, ISBN-13: 978-1482237726
[enderton] A Mathematical Introduction to Logic
Herbert B. Enderton
Academic Press, 2nd edition, 2001, ISBN-13: 978-0122384523